COMP 250

Lecture 27/

heaps 1

March 16, 2022

Priority Queue (ADT)

Like a queue, but now we have a more general definition of
which element to remove next, namely the one with highest

priority.
e.g. hospital emergency room (triage)

Assume a set of comparable elements or “keys”

Priority Queue ADT

* add(key)

* removeMin()

“highest” priority = “number 1” priority

How to implement a Priority Queue ?

 BAD: sorted arraylist or linked list (too slow)

* GOOD: heap (todayand next lecture)

Complete Binary Tree (definition)

O

O

A complete binary tree is a binary tree of height h such that
every level less than his full and all nodes at level h are as far
to the left as possible

min Heap (definition)

A “min heap” is a complete binary tree with unigue comparable keys
(no duplicates), such that each node’s key is less than its children’s
keys. (NOT a binary search tree !)

Problem : adding at the next available slot destroys the
heap property.

We swap c with its parent f.

Q: Can this create a problem with c’s former sibling, who is now
c’s child?

A: No.
c<f and f<m.
Thus, c<m.

Q: Are we done ?

A: Not necessarily. What about c’s parent? (c < e)

We swap c with its parent e, and now we are done because c is
greater than its new parent a.

11

add(key)

add(key){

cur = new node at next available leaf position

cur.key = key

12

add(key)

add(key){
cur = new node at next available leaf position
cur.key = key

while (cur !=root) and (cur.key < cur.parent.key){

add(key)

add(key){
cur = new node at next available leaf position
cur.key = key
while (cur !=root) and (cur.key < cur.parent.key){
swapkey(cur, parent)

cur = cur.parent

How to build a heap?

add(k)
add(f) ? ®

How to build a heap?

add(k)
add(f)
add(e) ?

How to build a heap?

add(k) Q

add(f)
add(e)

add(a) ? (I (£

How to build a heap?

add(k)
add(f)
add(e)
add(a)
add(g) ?

ado
ado
ado
ado

add

(k)
(f)
(e)
(a)
(g)

How to build a heap?

add(key)

J

“upHeap”

20

add(key) removeMin()

J

/

“upHeap” Q: How to do this?

removeMin()

It returns the root key.

How can we do this?

removeMin()

23

removeMin()

a will be returned

removeMin()

Swap keys with smaller child.

0
*
*
*
*
’0
0

Keep swapping
with smaller child,

@ 0 @ if necessary.

removeMin()

Let’s call removeMin again...

26

removeMin()

Now swap with smaller

child (if necessary) to
preserve heap property. —

b will be returned

removeMin()

Keep swapping
with smaller child,

if necessary. @ 0 @ G

removeMin()

removeMin(){
tmp = root.key

return tmp

}

30

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root

return tmp

}

31

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root

cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or
(cur has right child and (cur.key > cur.right.key)))

{

}

return tmp

}

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or
(cur has right child and (cur.key > cur.right.key)))
{ minChild = child with the smaller key

}

return tmp

}

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or
(cur has right child and (cur.key > cur.right.key)))
{ minChild = child with the smaller key
swapkey(cur, minChild)
cur = minChild

}

return tmp

We have just sketched out...

add(key) removeMin()

J

o= w—

==

llupHeapH udownHeapn

Heap (array implementation)

complete binary tree

Not used

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Heap (array implementation)

Not used

¢aebflukmgnqwz

parent = child /2

left
right

Not used

= 2*parent
= 2%*parent +1

10

Heap index relations

11 12 13

8 9 10 11 12 13 14 15

38

parent = child /2

Heap index relations

left = 2*parent
right = 2*parent +1
Not used
‘ 8 9 10 11 12 13
1 N
O 1 2 3 4 5 6 8 9 10 11 12 13 14 15

39

parent = child /2

left
right

Not used

= 2*parent
= 2%*parent +1

Heap index relations

8 9 10 11 12 13 14 15

40

parent = child /2

Heap index relations

left = 2*parent
right = 2*parent +1
Not used
8 9 10
* []
O 1 2 3 4 5 6

8 9 10 11 12 13 14 15

41

e.g. add(c)

9

10

11

12

13

14 15

42

e.g. add(c)

10

11

12

13

14 15

43

e.g. add(c)

10

11

12

13

14 15

44

e.g. add(c)

10

11

12

13

14 15

45

add(key){
Size =size+1
heap| size] = key

| =size
// now "upHeap"
while (i>1 and heapli] < heap[i/2 1){

swapkeys(i, i/2)
i=i/2

Coming up...

Lectures

Assessments

Fri. March 18 (lecture 28)
Building a heap, Heapsort

Mon. & Wed March 21 & 23
Maps & Hashing

Fri. March 25
Graphs 1

Assignment 3

due today

Quiz4 (lectures 20-25)
Fri. March 18

Assignment 4 posted next week

47

