
1

COMP 250

Lecture 27

heaps 1

March 16, 2022

Priority Queue (ADT)

Like a queue, but now we have a more general definition of
which element to remove next, namely the one with highest
priority.

e.g. hospital emergency room (triage)

Assume a set of comparable elements or “keys”
(as with a binary search tree) .

2

Priority Queue ADT

• add(key)

• removeMin()
“highest” priority = “number 1” priority

Similar to enqueue(e) and dequeue(), but now dequeue() is
called removeMin() and the policy is different from FIFO policy.

3

How to implement a Priority Queue ?

• BAD: sorted arraylist or linked list (too slow)

• GOOD: heap (today and next lecture)

The word “heap” is used in two different ways in computer
science. The other way is a “heap” is the part of memory where
objects are stored. This is similar the meaning of “heap” used in
COMP 206.

4

Complete Binary Tree (definition)

5

e ga

c

f

m

d

j

jd

A complete binary tree is a binary tree of height h such that
every level less than h is full and all nodes at level h are as far
to the left as possible

min Heap (definition)

6

l uf

e

a

b

k

m

A “min heap” is a complete binary tree with unique comparable keys
(no duplicates), such that each node’s key is less than its children’s
keys. (NOT a binary search tree !)

add(key)

7

l uf

e

a

b

k

m

e.g. add(c)

add(key)

8

l uf

e

a

b

k

m

e.g. add(c)

c

Problem : adding at the next available slot destroys the
heap property.

9

l uc

e

a

b

k

m f

We swap c with its parent f.

Q: Can this create a problem with c’s former sibling, who is now
c’s child? (It doesn’t in this example, but in general ?)

A: No.
c < f and f < m.
Thus, c < m.

10

l uc

e

a

b

k

m f

Q: Are we done ?

A: Not necessarily. What about c’s parent ? (c < e)

11

l ue

c

a

b

k

m f

We swap c with its parent e, and now we are done because c is
greater than its new parent a .

add(key)

add(key){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent)
cur = cur.parent

}
}

12

add(key)

add(key){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent)
cur = cur.parent

}
}

13

add(key)

add(key){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent) // arguments are nodes
cur = cur.parent

}
}

14

How to build a heap?

15

kadd(k)
add(f) ?
add(e)
add(a)
add(g)

How to build a heap?

16

k

fadd(k)
add(f)
add(e) ?
add(a)
add(g)

How to build a heap?

17

k

e

f

add(k)
add(f)
add(e)
add(a) ?
add(g)

How to build a heap?

18

k

e

a

f

add(k)
add(f)
add(e)
add(a)
add(g) ?

How to build a heap?

19

k

e

a

f

add(k)
add(f)
add(e)
add(a)
add(g)

g

20

add(key)

“upHeap”

21

add(key) removeMin()

“upHeap” Q: How to do this?

removeMin()

22

l ue

c

a

b

k

m f

It returns the root key.

How can we do this?

removeMin()

23

l ue

c

a

b

k

m f

removeMin()

24

l ue

c

f

b

k

m

a will be returned

removeMin()

25

l ue

c

b

f

k

m

Swap keys with smaller child.

Keep swapping
with smaller child,
if necessary.

removeMin()

26

l ue

c

b

f

k

m

Let’s call removeMin again...

removeMin()

27

l ue

c

m

f

k

Now swap with smaller
child (if necessary) to
preserve heap property.

b will be returned

removeMin()

28

l ue

m

c

f

k

Keep swapping
with smaller child,
if necessary.

removeMin()

29

l um

e

c

f

k

30

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has at least one child) and

((cur.key > cur.left.key) or
(cur has right child and cur.key > cur.right.key)))

{ minChild = child with the smaller key
swapkey(cur, minChild)
cur = minChild

}
return tmp

}

31

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has at least one child) and

((cur.key > cur.left.key) or
(cur has right child and cur.key > cur.right.key)))

{ minChild = child with the smaller key
swapkey(cur, minChild)
cur = minChild

}
return tmp

}

Now adjust the heap if necessary.

32

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or

(cur has right child and (cur.key > cur.right.key)))
{ minChild = child with the smaller key

swapkey(cur, minChild)
cur = minChild

}
return tmp

}

33

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or

(cur has right child and (cur.key > cur.right.key)))
{ minChild = child with the smaller key

swapkey(cur, minChild)
cur = minChild

}
return tmp

}

34

removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has a left child) and (cur.key > cur.left.key)) or

(cur has right child and (cur.key > cur.right.key)))
{ minChild = child with the smaller key // left child, if right is null

swapkey(cur, minChild)
cur = minChild

}
return tmp

}

We have just sketched out…

35

add(key) removeMin()

“upHeap” “downHeap”

Heap (array implementation)

36

e ga

c

f

m

d

j

jd

1

2 3

4 5 6 7

8 9 10 11 12 13

ddd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

complete binary tree

Heap (array implementation)

37

l uf

e

a

b

n

k

gm

1

2 3

4 5 6 7

8 9 10 11 12 13

zwq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

a e b f l u k m g n q w z

Heap index relations

38

l uf

e

a

b

n

k

gm

1

2 3

4 5 6 7

8 9 10 11 12 13

zwq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

parent = child / 2
left = 2*parent
right = 2*parent + 1

Heap index relations

39

l uf

e

a

b

n

k

gm

1

2 3

4 5 6 7

8 9 10 11 12 13

zwq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

parent = child / 2
left = 2*parent
right = 2*parent + 1

Heap index relations

40

l uf

e

a

b

n

k

gm

1

2 3

4 5 6 7

8 9 10 11 12 13

zwq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

parent = child / 2
left = 2*parent
right = 2*parent + 1

Heap index relations

41

l uf

e

a

b

n

k

gm

1

2 3

4 5 6 7

8 9 10 11 12 13

zwq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

parent = child / 2
left = 2*parent
right = 2*parent + 1

42

l uf

e

a

b

k

m

1

2 3

4 5 6 7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

a e b f l u k m

e.g. add(c)

43

l uf

e

a

b

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

a e b f l u k m c

e.g. add(c)

c

44

l uc

e

a

b

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

a e b c l u k m f

e.g. add(c)

f

45

l ue

c

a

b

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

a c b e l u k m f

e.g. add(c)

f

add(key){
size = size + 1 // number of keys in heap
heap[size] = key // assuming array

// has room for another key
i = size

// now "upHeap"

while (i > 1 and heap[i] < heap[i/2]){
swapkeys(i, i/2)
i = i/2

}
}

46

Coming up…

Lectures

Fri. March 18 (lecture 28)

Building a heap, Heapsort

Mon. & Wed March 21 & 23

Maps & Hashing

Fri. March 25

Graphs 1

Assessments

Assignment 3

due today

Quiz 4 (lectures 20-25)

Fri. March 18

Assignment 4 posted next week

47

