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Priority Queue (ADT)

Like a queue, but now we have a more general definition of 
which element to remove next,  namely the one with highest 
priority.

e.g.   hospital emergency room  (triage)  

Assume a set of comparable elements or “keys”
(as with a binary search tree) .
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Priority Queue  ADT

• add(key)

• removeMin()
“highest” priority =  “number 1” priority

Similar to enqueue( e )  and dequeue(),   but now  dequeue() is 
called  removeMin() and the policy is different from FIFO policy. 
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How to implement a Priority Queue ?

• BAD:   sorted arraylist or linked list   (too slow)

• GOOD:    heap   (today and next lecture)

The word “heap” is used in two different ways in computer 
science.   The other way is a “heap” is the part of memory where 
objects are stored.    This is similar the meaning of “heap” used in 
COMP 206.
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Complete Binary Tree (definition)
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A complete binary tree is a binary tree of height h  such that 
every level less than h is full and all nodes at level h are as far 
to the left as possible



min Heap (definition)
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A “min heap” is a complete binary tree with unique comparable keys 
(no duplicates),  such that each node’s key is less than its children’s 
keys.   (NOT a binary search tree !)



add(key) 
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e.g.    add( c )



add(key) 
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e.g.    add( c )
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Problem : adding at the next available slot destroys the 
heap property.  
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We swap  c with its parent f.      

Q:  Can this create a problem with c’s former sibling,  who is now
c’s child?   (It doesn’t in this example, but in general ?)

A:   No. 
c < f and  f < m.
Thus,  c < m.  
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Q:  Are we done ?

A:   Not necessarily.   What about c’s  parent ?   (c <  e)
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We swap c with its parent e, and now we are done because c is 
greater than its new parent a .      



add(key) 

add( key ){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent)
cur = cur.parent

}
}
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add(key) 

add( key ){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent)
cur = cur.parent

}
}
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add(key) 

add( key ){
cur = new node at next available leaf position
cur.key = key
while (cur != root) and (cur.key < cur.parent.key){

swapkey(cur, parent)     //   arguments are nodes
cur = cur.parent

}
}
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How to build a heap?
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kadd( k )
add( f )   ?
add( e )
add( a )
add( g )



How to build a heap?
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How to build a heap?
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How to build a heap?
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How to build a heap?
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add( f )
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add(key)

“upHeap”
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add(key) removeMin()

“upHeap” Q:  How to do this?



removeMin()     
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It returns the root key. 

How can we do this?



removeMin()
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removeMin()
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a  will be returned



removeMin()
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Swap keys with smaller child.  

Keep swapping 
with smaller child, 
if necessary.



removeMin()
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Let’s call removeMin again...



removeMin()
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Now swap with smaller 
child (if necessary) to 
preserve heap property.

b will be returned



removeMin()
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Keep swapping 
with smaller child, 
if necessary.



removeMin()
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removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has at least one child) and

( (cur.key > cur.left.key) or 
(cur has right child and cur.key > cur.right.key)) )  

{          minChild = child with the smaller key
swapkey(cur, minChild)
cur = minChild

}
return tmp

}
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removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ((cur has at least one child) and

( (cur.key > cur.left.key) or 
(cur has right child and cur.key > cur.right.key)) )  

{          minChild = child with the smaller key
swapkey(cur, minChild)
cur = minChild

}
return tmp

}

Now adjust the heap if necessary.    
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removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ( (cur has a left child) and (cur.key > cur.left.key)) or 

(cur has right child and (cur.key > cur.right.key) )  )  
{   minChild = child with the smaller key

swapkey(cur, minChild)
cur = minChild

}
return tmp

}
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removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ( (cur has a left child) and (cur.key > cur.left.key)) or 

(cur has right child and (cur.key > cur.right.key) )  )  
{     minChild = child with the smaller key

swapkey(cur, minChild)
cur = minChild

}
return tmp

}
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removeMin(){
tmp = root.key
remove last leaf node and put its key into the root
cur = root
while ( (cur has a left child) and (cur.key > cur.left.key)) or 

(cur has right child and (cur.key > cur.right.key) )  )        
{     minChild = child with the smaller key  //  left child, if right is null

swapkey(cur, minChild)
cur = minChild

}
return tmp

}



We have just sketched out… 
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add(key) removeMin()

“upHeap” “downHeap”



Heap  (array implementation)
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complete binary tree



Heap  (array implementation)
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Not used

a      e    b     f      l      u    k     m    g     n    q    w     z



Heap index relations
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Not used

parent  =  child / 2
left    =    2*parent
right  =   2*parent  + 1



Heap index relations
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Not used

parent  =  child / 2
left      =    2*parent
right    =   2*parent  + 1



Heap index relations
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Not used

parent  =  child / 2
left      =    2*parent
right    =   2*parent  + 1



Heap index relations
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Not used

parent  =  child / 2
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right    =   2*parent  + 1



42

l uf

e

a

b

k

m

1

2       3
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0        1        2     3         4      5       6       7        8      9      10     11     12     13     14    15    

Not used

a      e    b     f      l      u    k     m   

e.g.   add( c )
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Not used

a      e    b     f      l      u    k     m    c

e.g.   add( c )

c
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Not used
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e.g.   add( c )

f
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e.g.   add( c )
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add(key ){
size = size + 1          // number of keys in heap  
heap[ size ] = key   // assuming array 

//  has room for another key
i = size

//  now  "upHeap"

while ( i > 1  and heap[i] < heap[ i/2 ]){
swapkeys( i, i/2 )          
i = i/2

}
} 
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Coming up…

Lectures

Fri.     March 18    (lecture 28)

Building a heap,  Heapsort

Mon. & Wed    March 21 & 23

Maps & Hashing

Fri.  March 25 

Graphs 1

Assessments

Assignment 3

due  today

Quiz 4   (lectures  20-25)

Fri.  March 18

Assignment 4 posted next week
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