STEM Support

https://infomcgillstem.wixsite.com/stemsupportmcgill

MSSG = McGill Space systems group

http://www.mcgillspace.com/#!/

Tea and snacks provided, it's FREE.

THURSDAY NOVEMBER 9TH 5:30-7:30PM

Where: Rutherford Physics BOARD ROOM
What: Come chat about diversity in the Canadian Space Program AND MORE!

ALL Students and Staff welcome!
RECALL: \textit{min} Heap (definition)

Complete binary tree with (unique) comparable elements, such that each node’s element is less than its children’s element(s).
Heap index relations

parent = child / 2
left = 2*parent
right = 2*parent + 1
buildHeap()
add()

removeMin()
downHeap(1, size)
How to build a heap? (slight variation)

```java
buildHeap()
{
  // assume that an array already contains size elements
  for (k = 2; k <= size; k++)
    upHeap( k )
}
```
How to build a heap? (slight variation)

```java
buildHeap(){
    // assume that an array already contains size elements
    for (k = 2; k <= size; k++)
        upHeap( k )
}

upHeap(k){
    i = k
    while (i > 1) and ( heap[i] < heap[i / 2] ){
        swapElement(i, i/2)
        i = i/2
    }
}
```
Recall last lecture: Worse case of buildHeap
Thus, worst case: buildHeap is $\Theta(n \log_2 n)$

Next, I will show you a $\Theta(n)$ algorithm for building a heap.
How to build a heap? (fast)

Half the nodes of a heap are leaves.
(Each leaf is a heap with one node.)

The last non-leaf node has index $\frac{\text{size}}{2}$.
How to build a heap? (fast)

```c
buildHeapFast()
{
    // assume that heap[ ] array contains size elements
    for (k = size/2; k >= 1; k--)
        downHeap( k, size )
}
```
k = 3
\[k = 3 \]

downHeap(3, 6)
\begin{align*}
\text{downHeap}(3, 6) \\
k = 3
\end{align*}
downHeap(2, 6)

k = 2
k = 2
k = 1

downHeap(1, 6)

1 2 3 4 5 6

w p f x r t
k = 1

1 2 3 4 5 6

f p w x r t

k = 1
k = 1
buildHeapFast(list){
 copy list into a heap array
 for (k = size/2; k >= 1; k--)
 downHeap(k, size)
}

Claim: this algorithm is $\Theta(n)$.

What is the intuition for why this algorithm is so fast?
We tend to draw binary trees like this:

But the number of nodes doubles at each level. So we should draw trees like this:
buildheap algorithms

last lecture

Most nodes swap $\sim h$ times in worst case.

today

Few nodes swap $\sim h$ times in worst case.
How to show buildHeapFast is \(\Theta(n) \)?

The worst case number of swaps needed to downHeap node \(i \) is the height of that node.

\[
t(n) = \sum_{i=1}^{n} \text{height of node } i
\]

\(\frac{1}{2} \) of the nodes do no swaps.
\(\frac{1}{4} \) of the nodes do at most one swap.
\(\frac{1}{8} \) of the nodes do at most two swaps....
Let’s do the calculation for a tree that whose last level is full.
Worse case of buildHeapFast?

How many elements at level \(l \)? \((l \in 0, \ldots, h)\)

What is the height of each level \(l \) node?
Worse case of buildHeapFast?

level l has 2^l elements, $l \in 0, \ldots, h$

level l nodes have height $h - l$.

$$t(n) = \sum_{i=1}^{n} \text{height of node } i$$

= ?
Worse case of buildHeapFast?

level l has 2^l elements, $l \in 0,\ldots, h$

level l nodes have height $h - l$.

$$t(n) = \sum_{i=1}^{n} \text{height of node } i$$

$$= \sum_{i=0}^{h} (h - l) \ 2^l$$
\[t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) \ 2^l \]

\[= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l \ 2^l \]

Easy (number of nodes) Difficult (sum of node depths)
\[t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) \ 2^l \]

\[= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l \ 2^l \]

\[= h(2^{h+1} - 1) - (h - 1)2^{h+1} - 2 \]
\[
\sum_{l=0}^{h} l \ 2^l = \sum_{l=0}^{h} l (2^{l+1} - 2^l) \quad \text{(trick)}
\]

\[
= \sum_{l=0}^{h} l \ 2^{l+1} - \sum_{l=0}^{h} l \ 2^l
\]

\[
= \sum_{l=0}^{h} l \ 2^{l+1} - \sum_{l=0}^{h-1} (l + 1) \ 2^{l+1} \quad \text{Second term index goes to h-1 only}
\]

\[
= h \ 2^{h+1} + 2 \sum_{l=0}^{h-1} (l - (l + 1)) \ 2^l
\]

\[
= h \ 2^{h+1} - 2 \sum_{l=0}^{h-1} 2^l
\]

\[
= h \ 2^{h+1} - 2(2^h - 1)
\]

\[
= (h - 1)2^{h+1} + 2
\]
\[t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) 2^l \]

\[= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l 2^l \]

\[= h(2^{h+1} - 1) - (h - 1)2^{h+1} - 2 \quad \text{from above} \]

\[= 2^{h+1} - h - 2 \]

Since \(n = 2^{h+1} - 1 \), we get:

\[t_{\text{worst case}}(n) = n - \log(n + 1) \]
Summary: buildheap algorithms

last lecture

$O(n \log_2 n)$

height

today

h

$O(n)$
Heapsort

Given a list with size elements:

Build a heap.

Repeatedly call removeMin() and put the removed elements into a list.
“in place” Heapsort

Given an array \(\text{heap}[\] \) with size elements:

heapsort()
{
 buildheap()
 for \(i = 1 \) to size{
 swapElements(heap[1], heap[size + 1 - i])
 downHeap(1, size - i)
 }
 return reverse(heap)
}
a d b e l u k f w | w d b e l u k f | a
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>b</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>k</td>
<td>f</td>
<td>w</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>k</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>b</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>k</td>
<td>f</td>
<td>w</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>k</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>f</td>
<td>d</td>
<td>k</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>f</td>
<td>k</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>k</td>
<td>f</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
1 2 3 4 5 6 7 8 9

<table>
<thead>
<tr>
<th>a</th>
<th>d</th>
<th>b</th>
<th>e</th>
<th>l</th>
<th>u</th>
<th>k</th>
<th>f</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>d</td>
<td>k</td>
<td>e</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>k</td>
<td>f</td>
<td>l</td>
<td>u</td>
<td>w</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>k</td>
<td>w</td>
<td>l</td>
<td>u</td>
<td>d</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
heapsort(list){
 buildheap(list)
 for i = 1 to size{
 swapElements(heap[1], heap[size + 1 - i])
 downHeap(1, size - i)
 }
 return reverse(heap)
}