Faster algorithm for building a heap

Last lecture I showed you an \(O(n \log_2 n) \) algorithm for building a heap. I will next present an algorithm that runs in time \(O(n) \). The faster algorithm is based on the `downHeap()` method from last lecture, where the two parameters are `startIndex` and `maxIndex` in the heap array. The input is a list with `size` elements. The output is a heap.

```java
buildHeapFast(list){
    create new heap array // size == 0, length > list.size
    for (k = size/2; k >= 1; k--)
        downHeap( k, size )
}
```

The algorithm begins at node \(k = \lfloor n/2 \rfloor \) and decrements the index down to the root node \(k = 1 \). For each \(k \), it `downHeaps`, that is, it swaps the element from starting position \(k \) with the smaller of its children and repeats this until it is less than both its children (if it has any children).

The reason that the algorithm starts at \(k = \lfloor n/2 \rfloor \) is that the nodes \(\lfloor n/2 \rfloor + 1 \) to \(n \) have no children to compare with. So we don’t bother `downHeaping` them.

Example

An initial arrangement of \(n = 6 \) keys is shown on the left. I show the state of the tree before the \(k \)th node is `downHeaped`, and the final state.

<table>
<thead>
<tr>
<th>(k=3) (c)</th>
<th>(k=2) (x)</th>
<th>(k=1) (w)</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
<td>b</td>
</tr>
<tr>
<td>/ \</td>
<td>/ \</td>
<td>/ \</td>
<td>/ \</td>
</tr>
<tr>
<td>x c --> x b --> p b --> p c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/ \ / \ / \ / \ / \</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p r b p r c x r c x r w</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worst case analysis for `buildHeapFast`

For each \(k \) of the `buildHeap` algorithm, the worst case number of swaps done by `downHeap()` is the height of the node \(k \) in the tree. Thus the total number of swaps that we need to do is the total of the heights of the nodes in the tree. Recall that the height of a node in a tree is the maximum path length from the node to a leaf.

Let \(h \) be the height of the tree i.e. the height of the root node. Let’s assume for mathematical analysis that we have a complete binary tree of height \(h \) and that level \(h \) is full. (All other levels are full by definition.) In this case, you can see by inspection that the height of every node at level \(l \) will be \(h - l \). That is, the height of the root node (level 0) is \(h \), the height of the two children of the root are \(h - 1 \), etc, and the height of all leaf nodes is \(h - h = 0 \).
Define $t_{\text{worst case}}(n)$ be the sum of heights of all nodes. We write it in terms of h and sum over levels l:

$$t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) \ 2^l$$

$$= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l \ 2^l$$

The first term is $h(2^{h+1} - 1)$. The second term is the sum of the depths (or levels) of all the nodes. It is a bit trickier to solve.

I show in the Appendix (next page) that:

$$\sum_{l=0}^{h} l \ 2^l = (h - 1)2^{h+1} + 2$$

Plugging into the term terms above, we get

$$t_{\text{worst case}}(h) = h(2^{h+1} - 1) - (h - 1)2^{h+1} - 2$$

which we can simplify to

$$t_{\text{worst case}}(h) = 2^{h+1} - h - 2$$

To write $t_{\text{worst case}}(n)$ in terms of n rather than h, we recall that we are assuming all levels of the tree are full, i.e. including level $l = h$ which is the height of the tree. So,

$$n = 2^{h+1} - 1$$

and so

$$h = \log(n + 1) - 1.$$

Substituting for h, we get

$$t_{\text{worst case}}(n) = n - (\log(n + 1)).$$

Remarkably, this is less than n. In particular, $t_{\text{worst case}}(n)$ is $O(n)$.

The intuition here is that most of the nodes in the tree are near the leaves, since the height of the tree is $\lfloor \log n \rfloor$, most of the leaves have depth which is either $\lfloor \log n \rfloor$ or very close to it.
Appendix

Here I will give a slightly simpler derivation than what I gave in the lecture and slides. The idea for this derivation was pointed out to me by a student after class and is indeed simpler.

\[t_{\text{sumlevels}}(h) = \sum_{l=0}^{h} l \ 2^l \quad (*) \]
\[= \sum_{l=0}^{h-1} (l + 1)2^{l+1} \quad (**) \]

Multiplying both sides of (*) by 2 gives

\[2 \ t_{\text{sumlevels}}(h) = \sum_{l=0}^{h} l \ 2^{l+1} \quad (***) \]

and taking the difference (***) - (**) gives

\[t_{\text{sumlevels}}(h) = h2^{h+1} - \sum_{l=0}^{h-1} 2^{l+1} \]
\[= h2^{h+1} - 2 \sum_{l=0}^{h-1} 2^l \]
\[= h2^{h+1} - 2(2^h - 1) \]
\[= (h - 1)2^{h+1} + 2 \]