RECALL: \textit{min} Heap (definition)

Complete binary tree with (unique) comparable elements, such that each node’s element is less than its children’s element(s).
Heap index relations

parent = child / 2
left = 2*parent
right = 2*parent + 1
RECALL: How to build a heap

Given a list with size elements:

```java
buildHeap(list){
    create new heap array  // length >  list.size
    for (k = 0; k < list.size; k++)
        add( list[k] )  // add to heap[ ]
}
```
Thus, \(level = \lfloor \log_2 i \rfloor \)
Worse case of buildHeap

\[t(n) = \sum_{i=1}^{n} \text{number of swaps for node } i \]

\[= \sum_{i=1}^{n} \text{level of node } i \]

\[= \sum_{i=1}^{n} \text{floor}(\log_2 i) \]
$t(n) = \sum_{i=1}^{n} \text{floor}(\log_2 i)$

Area under the dashed curve is the total number of swaps (worst case) of buildHeap.
\[\frac{1}{2} n \log_2 n \leq t(n) \leq n \log_2 n \]
Thus, worst case: buildHeap is \(O(n \log_2 n) \)

This is a tight \(O(\) \) bound.

Today, I will show you a \(O(n) \) algorithm.
Given a list with size elements:

```c
buildHeapFast(list){
  copy list into a heap array
  for (k = size/2; k >= 1; k--)
    downHeap(k, size)
}
```
1 2 3 4 5 6

wxtprf
downHeap(3, 6)
downHeap(3, 6)
downHeap(2, 6)
downHeap(1, 6)
1 2 3 4 5 6

f p w x r t

```
1 2 3
4 5 6
```

```
f
p
w
x
r
t
```

```
1
2
3
```

```
f
  p
  |
  2 3
  |
  x
  |
  4
  |
  r
  5
  |
  t
  6
```
buildHeapFast(list){
 copy list into a heap array
 for (k = size/2; k >= 1; k--)
 downHeap(k, size)
}

Claim: this algorithm is O(n).

Intuition for why this algorithm is so fast?
buildheap algorithms

last lecture

upHeap based

today

downHeap based
We tend to draw binary trees like this:

But the number of nodes doubles at each level. So we should draw trees like this:
buildheap algorithms

last lecture

Most nodes swap h times in worst case.

today

Few nodes swap h times in worst case.
How to show buildHeapFast is $O(n)$?

Worst case number of swaps needed to add node i is the height of that node.

(Recall the height of a node is the length of the longest path from that node to a leaf.)

$$t(n) = \sum_{i=1}^{n} \text{height of node } i$$
Worse case of buildHeapFast?

How many elements at level l? $(l \in 0,\ldots, h)$

What is the height of each level l node?
Worse case of buildHeapFast ?

level \(l \) has \(2^l \) elements, \(l \in 0,\ldots, h \)

level \(l \) nodes have height \(h - l \).

\[
t(n) = \sum_{i=1}^{n} \text{height of node } i
\]

= ?
Worse case of buildHeapFast?

level \(l \) has \(2^l \) elements, \(l \in 0,\ldots, h \)

level \(l \) nodes have height \(h - l \).

\[
\begin{align*}
t(n) &= \sum_{i=1}^{n} \text{height of node } i \\
 &= \sum_{i=0}^{h} (h - l) 2^l
\end{align*}
\]
\[t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) \ 2^l \]

\[= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l \ 2^l \]

Easy

(number of nodes)

Difficult

(sum of node depths)
I have removed the next two slides which derived a closed for expression for the second summation (the difficult one). Please see lecture notes for a slightly different derivation, which is simpler.
\[t_{\text{worst case}}(h) = \sum_{l=0}^{h} (h - l) \cdot 2^l \]

\[= h \sum_{l=0}^{h} 2^l - \sum_{l=0}^{h} l \cdot 2^l \]

\[= h(2^{h+1} - 1) - (h - 1)2^{h+1} - 2 \]

\[= 2^{h+1} - h - 2 \]

In terms of \(n \), we have

\[t(n) = n - \log(n + 1) \]
Summary: buildheap algorithms

last lecture

\[O(n \log_2 n) \]

height

\[h \]

today

\[O(n) \]