RECALL: **min Heap** (definition)

Complete binary tree with (unique) comparable elements, such that each node’s element is less than its children’s element(s).
Heap (array implementation)
Heap index relations

parent = \text{child} / 2
left = 2 \times \text{parent}
right = 2 \times \text{parent} + 1
Heap index relations

parent = child / 2
left = 2*parent
right = 2*parent + 1
Heap index relations

\[
\text{parent} = \frac{\text{child}}{2} \\
\text{left} = 2\times\text{parent} \\
\text{right} = 2\times\text{parent} + 1
\]
Heap index relations

- $\text{parent} = \text{child} / 2$
- $\text{left} = 2 \times \text{parent}$
- $\text{right} = 2 \times \text{parent} + 1$
ASIDE: an array data structure can be used for *any* binary tree. But this is uncommon and often inefficient.
add(\textit{element})

“upHeap”

removeMin()

“downHeap”
add(element){
 size = size + 1 // number of elements in heap
 heap[size] = element // assuming array
 // has room for another element
 i = size

 // the following is sometimes called "upHeap"

 while (i > 1 and heap[i] < heap[i/2]){
 swapElements(i, i/2)
 i = i/2
 }
}
e.g. \texttt{add(c)}
e.g. `add(c)`
e.g. \(\text{add}(c) \)
e.g. \texttt{add(c)}
Given a list with size elements:

```java
buildHeap(list){
    create new heap array  // length > list.size
    for (k = 0; k < list.size; k++)
        add( list[k] )  // add to heap[ ]
}
```
You could write the buildHeap algorithm slightly differently by putting all the list elements into the array at the beginning, and then `upheaping` each one.
Best case of buildHeap is ... ?

Suppose we want to add some elements to an empty heap:
\texttt{a\ e\ b\ c\ l\ u\ k\ m\ f}

How many swaps do we need to add each element?

In the best case, ...
How many swaps do we need to add each element?

In the best case, the order of elements that we add is already a heap, and no swaps are necessary.
Worse case of buildHeap?

How many swaps do we need to add the i-th element?
Worse case of buildHeap?

How many swaps do we need to add the i-th element? Element i gets added to some level, such that:

$$2^{level} \leq i < 2^{level} + 1$$
Worse case of buildHeap?

$$2^{level} \leq i < 2^{level + 1}$$

$$level \leq \log_2 i < level + 1$$

Thus, $level = \text{floor}(\log_2 i)$
Worse case of buildHeap

Suppose there are i elements to add.

Worst case number of swaps needed to add node i.

$$t(n) = \sum_{i=1}^{n} \text{floor}(\log_2 i)$$
The graph illustrates the relationship between i and $log_2 i$. The y-axis represents $log_2 i$, while the x-axis represents i. The function $floor(log_2 i)$ is also marked on the graph, showing the effect of taking the floor of the logarithm on the data points.
Area under the dashed curve is the total number of swaps (worst case) of buildHeap.
\[t(n) \leq n \log_2 n \]
\[\frac{1}{2} n \, \log_2 n \leq t(n) \leq n \, \log_2 n\]
Thus, worst case: \(\text{buildHeap} \) is \(\Theta(n \log_2 n) \)

Next lecture I will show you a \(\Theta(n) \) algorithm.
add(element)

“upHeap”

removeMin()

“downHeap”
e.g. `removeMin()`
removeMin()

Let heap[] be the array.
Let size be the number of elements in the heap.

removeMin()
{
 heap[1] = heap[size]
}

removeMin()

Let heap[] be the array.
Let size be the number of elements in the heap.

```java
removeMin()
{
    heap[1] = heap[size]
    heap[size] = null
    size = size - 1
    downHeap(1, size) // next slide
    return tmpElement
}
```
downHeap(startIndex, maxIndex){

i = startIndex
while (2*i <= maxIndex){

 // if there is a left child
 child = 2*i
 if (child < size){
 // if there is a right sibling
 if (heap[child + 1] < heap[child])
 // if rightchild < leftchild?
 child = child + 1
 }

 if (heap[child] < heap[i]){
 // Do we need to swap with child?
 swapElements(i, child)
 i = child
 }
}
}
downHeap(startIndex, maxIndex) {

 i = startIndex
 while (2*i <= maxIndex) {
 child = 2*i
 if child < size {
 if (heap[child + 1] < heap[child]) {
 child = child + 1
 }
 }
 if (heap[child] < heap[i]) {
 swapElements(i, child)
 i = child
 }
 }
}

downHeap(startIndex , maxIndex){

 i = startIndex
 while (2*i <= maxIndex){ // if there is a left child
 child = 2*i
 if child < size { // if there is a right sibling
 if (heap[child + 1] < heap[child]) // if rightchild < leftchild ?
 child = child + 1
 }
 if (heap[child] < heap[i]){ // Do we need to swap with child?
 swapElements(i , child)
 i = child
 }
 else return // otherwise we have an infinite loop.
 }
}

Announcements

• Mycourses survey about MATH 240/235 and COMP 251

• Update on final exam grading policy
Final Exam grading policy

• Multiple Choice with 50 questions
• Four choices on each question
• *No penalty for incorrect answers*
 (so don’t leave any question blank)

• Grade out of 50
 \[= \max(0, -10 + \frac{6}{5} \times \text{raw number correct}) \]
Raw number correct for pure guessing?
(binomial distribution, $n=50$, $p=0.25$)

Hey, me and all my buddies averaged 25% raw scores on the final.