COMP 250

Lecture 23

(rooted) trees

March 7, 2022
Linear Data Structures

array

linked list

Non-Linear Data Structures

tree

graph
Here I ignore spouses ("partners").
Family Tree (2)

This is an example of a binary tree.
Organization Hierarchy (McGill)

This is not quite a tree
File system (e.g. UNIX/Linux)
Java Classes e.g. GUI
(Rooted) Tree Terminology

a box in the figure is called a node or vertex

root
A directed edge is an ordered pair of nodes: (from, to)
In a rooted tree, every node (except the root) is a child of exactly one parent. (But a parent can have more than one child.)
For some (rooted) trees, edges are...

- from parent to child
- from child to parent
- both from parent to child and from child to parent
- in neither direction (direction is ignored)

Most of definitions today will assume edges are from parent to child.
Q: If a rooted tree has n nodes, then how many edges does it have?

A: $n - 1$

Since every edge is of the form (parent, child), and each child has exactly one parent, except for the root node which has no parent.
Two nodes are **siblings** if they have the same **parent**.
“Recursive” definition of rooted tree

A rooted tree T is a set of $n > 0$ nodes such that:

• one of the nodes is the root r

• if $n > 1$ then the $n - 1$ non-root nodes are partitioned into k non-empty subsets T_1, T_2, ..., T_k, each of which is a rooted tree (called a subtree) and the roots of these subtrees are the children of root node r.

• “base case” is $n = 1$
internal nodes
(e.g. non empty file directories)

external nodes, "leaves"
(e.g. files or empty directories)
A path in a tree is a sequence of nodes \((v_1, v_2, \ldots, v_k)\) such that \((v_i, v_{i+1})\) is an edge.

The length of a path is the number of edges in the path (number of nodes in the path minus 1).
We also can talk about a path with just one node (v_1). Such a path has length = 0, since it has no edges.
What is the path length?

Answer: 2 (edges)
Node v is an **ancestor** of node w if there is a path from v to w. Similarly, node w is a **descendent** of node v.
The **depth** or **level** of a node is the length of the path *from the root to the node*.
How to compute depth(v) ?

Hint: think recursively.
Computing depth requires parent links. This is analogous to a ‘prev’ link in a doubly linked list.

```javascript
depth(v) {
    if (v.parent == null) //root
        return 0
    else
        return 1 + depth(v.parent)
}
```
The **height** of a tree is the *maximum* length of a path from the root node to a leaf.

height is 4
The height of a tree is the maximum length of a path from the root node to a leaf. To visualize height, we flip the tree upside down.
The **height** of a node is the maximum length of a path from that node to a leaf. (It is the height of the subtree, rooted at that node.)

What is this node's height?
The **height** of a node is the maximum length of a path from that node to a leaf. (It is the height of the subtree, rooted at that node.)
The **height** of a node is the maximum length of a path from that node to a leaf. (It is the height of the subtree, rooted at that node.)
How to compute \(\text{height}(v) \)?

Hint: think recursively
How to compute height(v) ?

```
height(v){
    if (v is a leaf)
        return 0
    else{
        h = 0
        for each child w of v
            h = max(h, height(w))
        return 1 + h
    }
}
```

Hint: think recursively
How to compute $\text{height}(v)$?

\[
\text{height}(v)\
\text{if (v is a leaf)} \\
\quad \text{return 0} \\
\text{else} \\
\quad h = 0 \\
\quad \text{for each child w of v} \\
\quad \quad h = \max(h, \text{height}(w)) \\
\quad \text{return 1 + h}
\]
How to implement a tree in Java?

class TreeNode<T>{

 T element;

}
How to implement a tree in Java?

class TreeNode<T> {
 T element;
 ArrayList<TreeNode<T>> children;
}

How to implement a tree in Java?

class TreeNode<T>{
 T element;
 ArrayList<TreeNode<T>> children;
 TreeNode<T> parent; // optional
}
class Tree<T> { // could be called RootedTree
 TreeNode<T> root;
 : // other methods

 // inner class

class TreeNode<T> {
 T element;
 ArrayList<TreeNode<T>> children;
 TreeNode<T> parent; // optional
 :

}
}
Another common implementation:

‘first child, next sibling’

(similar to singly linked lists)
Another common implementation: ‘first child, next sibling’
(similar to singly linked lists)

class Tree<T>{
 TreeNode<T> root;
 :

 // inner class

class TreeNode<T> {
 T element;
 TreeNode<T> firstChild;
 TreeNode<T> nextSibling;
 :
}
Another common implementation:

‘first child, next sibling’

class Tree<T>{
 TreeNode<T> root;
 :

 // inner class

class TreeNode<T>{
 T element;
 TreeNode<T> firstChild;
 TreeNode<T> nextSibling;
 TreeNode<T> parent;
 :
}
Exercise:
redraw this tree using first child, next sibling
Exercise:
redraw this tree using first child, next sibling

A tree can be represented using lists, as follows:

\[
\text{tree} = \text{root} \mid (\text{root} \ \text{listOfSubTrees})
\]

\[
\text{listOfSubTrees} = \text{tree} \mid \text{tree} \ \text{listOfSubTrees}
\]

Draw the tree that corresponds to the following list, where the elements are single digits.

```
6
2 3 4 9
1 7 5 8 0
```

first child, next sibling

```
6
2 3 4 9
1 7 5 8 0
```
Exercise

A tree can be represented using *nested lists*, as follows:

\[
\begin{align*}
\text{tree} & = \text{root} \mid (\text{root \ listOfSubTrees}) \\
\text{listOfSubTrees} & = \text{tree} \mid \text{tree \ listOfSubTrees}
\end{align*}
\]

Note that *listOfSubTrees* cannot be empty.

Updated March 9 Moreover, open brackets () must have at least two elements inside.
Exercise

A tree can be represented using *nested lists*, as follows:

\[
\text{tree} = \text{root} \mid (\text{root listOfSubTrees})
\]

\[
\text{listOfSubTrees} = \text{tree} \mid \text{tree listOfSubTrees}
\]

Example: Draw the tree that corresponds to the following list, where the elements are single digits.

\[
(6 (217) 3 (45) (980))
\]
Exercise

A tree can be represented using lists, as follows:

```latex
\text{tree} \quad = \quad \text{root} \quad | \quad ( \text{root} \ \text{listOfSubTrees} )
\text{listOfSubTrees} \quad = \quad \text{tree} \quad | \quad \text{tree} \ \text{listOfSubTrees}
```

Draw the tree that corresponds to the following list, where the elements are single digits.

\[(6 \ (2 \ 1 \ 7) \ 3 \ (4 \ 5) \ (9 \ 8 \ 0))\]
ASIDE: Non-rooted trees

You will see non-rooted trees in COMP 251. For these trees, there is no natural way to define the ‘root’. e.g. The tree on the left is only rooted because I drew it that way. It is the same (non-rooted) tree as the one on the right. Edge direction is ignored for this example.
Coming up...

Lectures

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed.</td>
<td>March 9</td>
<td>Tree Traversal</td>
</tr>
<tr>
<td>Fri.</td>
<td>March 11</td>
<td>Expression Trees</td>
</tr>
</tbody>
</table>

Assessments

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yesterday/Today</td>
<td>Quiz 3</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>due Wed. March 16</td>
</tr>
</tbody>
</table>