Binary tree:
each node has at most two children.
Maximum number of nodes in a binary tree?

Height h (e.g. 3)
Maximum number of nodes in a binary tree?

\[n = 1 + 2 + 4 + 8 + 2^h = 2^{h+1} - 1 \]
Minimum number of nodes in a binary tree?

\[n = h + 1 \]

Height \(h \) (e.g. 3)
class BTree<T>{
 BTNode<T> root;
}

class BTNode<T>{
 T e;
 BTNode<T> leftchild;
 BTNode<T> rightchild;
}
Binary Tree Traversal (depth first)

Rooted tree
(last lecture)

```
depthFirst(root){
    if (root is not empty){
        visit root
        for each child of root
            depthFirst( child )
    }
}
```
Binary Tree Traversal (depth first)

Rooted tree
(last lecture)

Binary tree

preorder(root){
 if (root is not empty){
 visit root
 for each child of root
 preorder(child)
 }
}

Rooted tree
(last lecture)
Binary Tree Traversal (depth first)

Rooted tree
(last lecture)

```
preorder(root){
    if (root is not empty){
        visit root
        for each child of root
            preorder( child )
    }
}
```

Binary tree

```
preorderBT (root){
    if (root is not empty){
        visit root
        preorderBT( root.left )
        preorderBT( root.right )
    }
}
```
preorderBT (root) {
 if (root is not empty) {
 visit root
 preorderBT (root.left)
 preorderBT (root.right)
 }
}

postorderBT (root) {
}
preorderBT (root){
 if (root is not empty){
 visit root
 preorderBT(root.left)
 preorderBT(root.right)
 }
}

postorderBT (root){
 if (root is not empty){
 postorderBT(root.left)
 postorderBT(root.right)
 visit root
 }
}
preorderBT (root){
 if (root is not empty){
 visit root
 preorderBT(root.left)
 preorderBT(root.right)
 }
}

inorderBT (root){
}

postorderBT (root){
 if (root is not empty){
 postorderBT(root.left)
 postorderBT(root.right)
 visit root
 }
}

12
preorderBT (root){
 if (root is not empty){
 visit root
 preorderBT(root.left)
 preorderBT(root.right)
 }
}

inorderBT (root){
 if (root is not empty){
 inorderBT(root.left)
 visit root
 inorderBT(root.right)
 }
}

postorderBT (root){
 if (root is not empty){
 postorderBT(root.left)
 postorderBT(root.right)
 visit root
 }
}
Example

Pre order:
In order:
Post order:
Example

Pre order: a b d e c f g

In order:

Post order:
Example

Pre order: abcdefg
In order: debafcg
Post order:
Example

Pre order: $a \ b \ d \ e \ c \ f \ g$

In order: $d \ e \ b \ a \ f \ c \ g$

Post order: $e \ d \ b \ f \ g \ c \ a$
Expression Tree

e.g. $3 + 4 \times 2$

$3 + (4 \times 2)$
Expression Tree

e.g. $3 + 4 \times 2$

$3 + (4 \times 2)$

$(3 + 4) \times 2$
My Windows calculator says $3 + 4 \times 2 = 14$.

Why? $(3 + 4) \times 2 = 14$.

Whereas... if I google “3+4*2”, I get 11.

$3 + (4 \times 2) = 11$.
We can make expressions using binary operators $+\, , \, -, \, *, \, /, \, ^$

\[a - b / c + d \times e ^ f ^ g \]

$^$ is exponentiation: $e ^ f ^ g = e ^ (f ^ g)$

We don’t consider unary operators e.g. $3 + -4 = 3 + (-4)$

Operator precedence ordering makes brackets unnecessary.

\[(a - (b / c)) + (d \times (e ^ (f ^ g)))\]
Expression Tree

\[a - b / c + d \times e \wedge f \wedge g \equiv (a - (b / c)) + (d \times (e \wedge (f \wedge g))) \]

Internal nodes are operators. Leaves are operands.
An expression tree can be a way of *thinking about* the ordering of operations used when evaluating an expression.

But to be concrete, *let’s assume we have a binary tree data structure.*
If we traverse an expression tree, and *print out* the node label, what is the expression printed out?

preorder traversal gives

```
+  
 
  -  *
  |  |
  a  /  d  ^
  |  |  |
  b  c  e  ^
  |  |  |
  f  g
```
If we traverse an expression tree, and *print out* the node label, what is the expression printed out?

preorder traversal gives:

\[+ - a / b c * d ^ e ^ f g \]
If we traverse an expression tree, and print out the node label, what is the expression printed out?

preorder traversal gives:

\[+ \ - \ a \ / \ b \ c \ * \ d \ ^\wedge \ e \ ^\wedge \ f \ g \]

inorder traversal gives:
If we traverse an expression tree, and print out the node label, what is the expression printed out?

preorder traversal gives: $+ - a / b c * d ^ e ^ f g$

inorder traversal gives: $a - b / c + d * e ^ f ^ g$
If we traverse an expression tree, and print out the node label, what is the expression printed out?

preorder traversal gives: \[+ - a / b c * d ^ e ^ f ^ g\]

inorder traversal gives: \[a - b / c + d * e ^ f ^ g\]

postorder traversal gives:
If we traverse an expression tree, and print out the node label, what is the expression printed out?

preorder traversal gives: $+ - a / b c * d ^ e ^ f g$

inorder traversal gives: $a - b / c + d * e ^ f ^ g$

postorder traversal gives: $a b c / - d e f g ^ ^ * +$
Prefix, infix, postfix expressions

```
prefix:       * a b
infix:         a * b
postfix:      a b *
```
Infix, prefix, postfix expressions

\[\text{baseExp} = \text{variable} | \text{integer}\]

\[\text{op} = + | - | * | / | ^\]

\[\text{preExp} = \text{baseExp} | \text{op preExp preExp}\]
Infix, prefix, postfix expressions

baseExp = variable | integer

op = + | - | * | / | ^

preExp = baseExp | op preExp prefExp

Use only one.

inExp = baseExp | inExp op inExp

postExp = baseExp | postExp postExp op
If we traverse an expression tree, and print out the node label, what is the expression printed out? (same question as four slides ago)

preorder traversal gives **prefix expression**: \(+ - a / b c * d ^ e ^ f g\)

inorder traversal gives **infix expression**: \(a - b / c + d * e ^ f ^ g\)

postorder traversal gives **postfix expression**: \(a b c / - d e f g ^ ^ * +\)
Prefix expressions called “Polish Notation”
(after Polish logician Jan Łukasiewicz 1920’s)

Postfix expressions are called “Reverse Polish notation” (RPN)

Some calculators (esp. Hewlett Packard) require users to input expressions using RPN.
Prefix expressions called “Polish Notation”
(after Polish logician Jan Lucasewicz 1920’s)

Postfix expressions are called “Reverse Polish notation” (RPN)

Some calculators (esp. Hewlett Packard) require users to input expressions using RPN.

Calculate $5 \times 4 + 3$

5 <enter>
4 <enter>
* <enter>
3 <enter>
+

No “=” symbol on keyboard.
Suppose we are given an expression tree. How can we evaluate the expression?
We use a postorder traversal (recursive algorithm):

```c
evalExpTree(root) {
  if (root is a leaf)  // root is a number
    return value
  else{  // the root is an operator
    firstOperand = evalExpTree( root.leftchild )
    secondOperand = evalExpTree( root.rightchild )
    return evaluate( firstOperand, root, secondOperand )
  }
}
```
What if we are not given an expression tree?

Infix expressions are awkward to evaluate because of precedence ordering.

Infix expressions with brackets are relatively easy to evaluate e.g. Assignment 2.
Assignment 2 (ignore case of ++, --)

for each token in expression {
 if token is a number
 valueStack.push(token)
 else if token is "\)" { // then you have a binary expression
 numStack.push(operand1 operator operand2)
 }
}

return valueStack.pop()
Assignment 2 (ignore case of ++, --)

for each token in expression {
 if token is a number
 valueStack.push(token)
 else if token is “)” { // then you have a binary expression
 operator = opStack.pop()
 operand2 = valueStack.pop()
 operand1 = valueStack.pop()
 numStack.push(operand1 operator operand2)
 }
}

return valueStack.pop()}
Infix expressions *with brackets* are relatively easy to evaluate, e.g., with two stacks as in Assignment 2.

Postfix expressions *without brackets* are easy to evaluate. Use one stack, namely for values (not operators).
Use a stack to evaluate postfix expression:

```
a b c / - d e f g ^ ^ ^ * +
```

Example:

This expression tree is not given. It is shown here so that you can visualize the expression more easily.
Example:

\[\text{a b c / - d e f g \&\& \ast +} \]

This expression tree is not given. It is shown here so that you can visualize the expression more easily.
We don’t push operator onto stack. Instead we pop value twice, evaluate, and push.
Now there is one value on the stack.
Now there are five values on the stack.
Use a stack to evaluate postfix expression:

\[a b c / - d e f g ^ ^ * + \]

<table>
<thead>
<tr>
<th>Stack over time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>a b</td>
</tr>
<tr>
<td>a b c</td>
</tr>
<tr>
<td>a (b c /)</td>
</tr>
<tr>
<td>(a (b c /) -)</td>
</tr>
<tr>
<td>(a (b c /) -) d e f g</td>
</tr>
<tr>
<td>(a (b c /) -) d e (f g ^)</td>
</tr>
</tbody>
</table>

Now there are four values on the stack.
Use a stack to evaluate postfix expression:

\[a \ b \ c \ / \ - \ d \ e \ f \ g \ ^\wedge \ ^\wedge \ * \ + \]

stack over time:

- Stack:
 - a
 - a b
 - a b c
 - a (b c /)
 - (a (b c /) -)

- Expression:
 - (a (b c /) -) d e f g
 - (a (b c /) -) d e (f g ^)
 - (a (b c /) -) d (e (f g ^) ^)

Three values on the stack.
Use a stack to evaluate postfix expression:

```
ab c / - def g ^ ^ * +
```

```
( a ( b c / ) - ) ( d e ( f g ^ ) * )
```

Two values on the stack.
Use a stack to evaluate postfix expression:

\[
\begin{align*}
& \text{a b c / - d e f g}^\wedge \wedge \ast + \\
& \text{a} \\
& \text{a b} \\
& \text{a b c} \\
& \text{a (b c /)} \\
& (\text{a (b c /)} -) \\
& \text{stack over time} \\
& (\text{a (b c /)} -) \text{ d e f g} \\
& (\text{a (b c /)} -) \text{ d e (f g }^\wedge) \\
& (\text{a (b c /)} -) \text{ d (e (f g }^\wedge)^\wedge) \\
& (\text{a (b c /)} -) (\text{d (e (f g }^\wedge)^\wedge)\ast) \\
& ((\text{a (b c /)} -) (\text{d (e (f g }^\wedge)^\wedge)\ast)\ast) + \\
& \text{One value on the stack.}
\end{align*}
\]
Algorithm: Use a stack to evaluate a postfix expression

Let expression be a list of elements.

s = empty stack
cur = first element of expression list
while (cur != null){
 if (cur.element is a base expression)
 s.push(cur.element)
 else{ // cur.element is an operator
 operand2 = s.pop()
 operand1 = s.pop()
 operator = cur.element // for clarity only
 s.push(evaluate(operand1, operator, operand2))
 }
 cur = cur.next
}
Algorithm: Use a stack to evaluate a postfix expression

Let expression be a list of elements.

s = empty stack
cur = first element of expression list
while (cur != null){
 if (cur.element is a base expression)
 s.push(cur.element)
 else{ // cur.element is an operator
 operand2 = s.pop()
 operand1 = s.pop()
 operator = cur.element // for clarity only
 s.push(evaluate(operand1, operator, operand2))
 }
 cur = cur.next
}
There are many variations of expression tree problems.

e.g. Define an algorithm that computes a postfix expression *directly* from an infix expression *with no brackets*. This is not so obvious if you have to respect precedence ordering e.g. +, -, *, /, ^

http://wcipeg.com/wiki/Shunting_yard_algorithm