
1

COMP 250

Lecture 20

recursion

A recursive method (or function) is a method that calls itself.

Examples we will see today:

• factorial function
• Fibonacci numbers
• reversing a list
• sorting a list
• tower of Hanoi

We will see many more examples later in the course.

Example 1: Factorial

The factorial of a positive integer is defined as follows:

Factorial (iterative)

4

public static int factorial (int n) {

int result = 1;

for (int i=2; i<=n; i++) {

result = result * i;

}

return result;

}

Factorial (Recursive Definition)

Factorial (Recursive)

public static int factorial (int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

Connection to Mathematical Induction ?

public static int factorial (int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

base case

induction step

Correctness
Claim: For all the recursive factorial(n) algorithm

returns .

Proof (by mathematical induction):
• Base case: factorial(0) returns .

• Induction step:
• Induction hypothesis: factorial(k) returns where
• We want to prove it follows that factorial(k+1) returns

• factorial(k+1) returns factorial(k)
, by induction hypothesis

Example 2: Fibonacci

9

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ….

= 0
= 1

= , for 0.
definition

Fibonacci (iterative)

10

public static int fibonacci(int n) {
if(n==0 || n==1) {

return n;
}
fib0 = 0;
fib1 = 1;
for (int i=2; i<=n; i++) {

fib2 = fib0 + fib1;
fib0 = fib1;
fib1 = fib2;

}
return fib2;

}

Fibonacci (recursive)

11

public static int fibonacci (int n) {
if(n==0 || n==1) {

return n;
}
return fibonacci(n-1) + fibonacci(n-2);

}

This is simpler to express than the iterative version.

Correctness

Claim: the recursive Fibonacci algorithm is correct.

Proof:

Base case(s): verify (trivial)

Induction step: (also trivial)

Let k > 1. Induction hypothesis is that fibonacci(k-1) returns F(k-1) and
fibonacci(k) returns F(k).

Then fibonacci(k+1) returns F(k-1)+ F(k), which is indeed F(k+1).

13

fibonacci(247)

fibonacci(246) fibonacci(245)

fibonacci(245) fibonacci(244) fibonacci(244) fibonacci(243)

fibonacci(244) fibonacci(243) fibonacci(243) fibonacci(242) etc

Unfortunately, the recursive Fibonacci algorithm is inefficient.
It computes the same quantity many times, for example:

In COMP 251, you will learn a general technique called dynamic
programming that avoid this inefficiency.

Example 3: Reversing a list

14

input (a b c d e f g h)

output (h g f e d c b a)

How to do this recursively?

Example 3: Reversing a list

15

input (a b c d e f g h)

output (h g f e d c b a)

How to do this recursively?

a (b c d e f g h)

(h g f e d c b) a

Example 3: Reversing a list
(recursive)

16

public static void reverse(List list) {
if(list.size()==1) {

return;
}
firstElement = list.remove(0);
reverse(list); // this list has n-1 elements
list.add(firstElement);

// appends at the end of the list
}

Note that Java’s list.add(E) returns a Boolean, which we ignore.

Example 4: Sorting a list
(recursive)

17

public static void sort(List list) {
if (list.size() == 1) {

return;
}

}

Can we apply a similar idea ?

Example 4: Sorting a list
(recursive)

18

public static void sort(List list) {
if (list.size() == 1) {

return;
}
minElement = removeMinElement(list);
sort(list); // now the list has n-1 elements
list.add(0, minElement); // insert at front

}

Note that Java’s list.add(int, E) is void. It changes the list.

You could do a similar solution by removing the max element and adding to end.

Example 5: Tower of Hanoi

19

Tower A
(start)

Tower B
(finish)

Tower C

Problem: Move n disks from start tower to finish tower such that:

- move one disk at a time (pop and push)

- you can push a smaller disk on top of bigger disk (but you can’t push a
bigger disk onto a smaller disk)

?

20

start finish

Example: n = 1

21

start finish

start finish

Example: n = 1

Example: n = 2

?

22

Example: n = 2 move from A to C

move from A to B

move from C to B

23

start finish

Q: How to move 5 disks from tower 1 to 2 ?

Hint: Think recursively.

?

24

Example: n = 5 Somehow move 4 disks from A to C

move 1 disk from A to B

Somehow move 4 disks from C to B

25

tower(n, start, finish, other) {

if (n==1) {
move from start to finish.

} else {
tower(n-1, start, other, finish)
tower(1, start, finish, other)
tower(n-1, other, finish, start)

}
}

For example, tower(5,A,B,C)

26

Example: n = 5 tower(5, A, B, C)

tower(4, A, C, B)

tower(1, A, B, C)

tower(4, C, B, A)

A B C

Correctness

27

Claim: the tower() algorithm is correct, namely it moves the
blocks from start to finish without breaking the two rules (one at
a time, and can’t put bigger one onto smaller one).

Proof: (sketch)

Base case: tower(1, *, *, *) is correct.

Induction step:

for any k >= 1, if tower(k, *, *, *) is correct
then tower(k + 1, *, *, *) is correct.

(verify by inspection of algorithm)

It doesn’t matter, as long as they are different.

induction hypothesis

How many moves ?

28

tower(1, start, finish, other)

move start
to finish

Answer: 1

How many moves ?

29

tower(2, start, finish, other)

tower(1, start, other, finish) tower(1, other, finish, start)

Answer: 1 + 2
move from A to C

move from A to B

move from C to B

move from A to C move from C to B

move from A to B

How many moves ?

30

tower(3, start, finish, other)

tower(2, start, other, finish) tower(2, other, finish, start)move

move

movemove

Answer:

movemove

tower(1,..) tower(1,..) movetower(1,..) tower(1,..)

How many moves ?

31

tower(, start, finish, other)

tower(, start, other, finish) tower(, other, finish, start)move

move move

movemovemovemove… … … … …… …

Answer: =

… ………

(Geometric series. Recall lecture 3, slide 4.)

Recall (lecture 16): “call stack”

32

void mA() {
mB();
mC();

}

void main(){
mA();

}

mB mC
mA mA mA mA mA

main main main main main main main

There is a single call stack for all
methods.

Recursive methods & Call stack

33

factorial(0)
factorial(1) factorial(1) factorial(1)

factorial(2) factorial(2) factorial(2) factorial(2) factorial(2)
main main main main main main main

public static int factorial (int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

34

Call stack for TestFactorial

slightly different from
previous slide

(not significant)

ASIDE: Stack frame
(details in COMP 273)

The call stack consists of “frames” that contain:

• the parameters passed to the method

• local variables of a method

• information about where to return (“which line
number in which method in which class?”)

35

36

parameters in
current stack frame

Call stack for TestTowerOfHanoi

slightly different code
from earlier slide
(not significant)

37

19. Induction
20. Recursion
21. Binary Search
22. Mergesort & Quicksort
23. Trees
24. Tree traversal
25. Binary trees
26. Binary search trees
27. Heaps 1
28. Heaps 2
29. Hashing 1 (maps)
30. Hashing 2
31. Graphs 1
32. Graphs 2
33. Big O 1
34. Big O 2
35. Big O 3
36. Recurrences 1
37. Recurrences 2

We will see recursive algorithms in
all these lectures, and informally
analyze computation complexity.

Here we will formally analyze the computation
complexity of recursive algorithms.

