COMP 250

Lecture 20
recursion

A recursive method (or function) is a method that calls itself.

Examples we will see today:

- factorial function
- Fibonacci numbers
- reversing a list
- sorting a list
- tower of Hanoi

We will see many more examples later in the course.

Example 1: Factorial

The factorial of a positive integer is defined as follows:

$$
\begin{aligned}
& 0!=1 \\
& 1!=1 \\
& 2!=1 * 2=2 \\
& 3!=1 * 2 * 3=6 \\
& \cdots \\
& n!=1 * 2 * \ldots *(n-2) *(n-1) * n
\end{aligned}
$$

Factorial (iterative)

$$
n!=1 * 2 * 3 * \ldots *(n-1) * n
$$

```
public static int factorial (int n)
```

 int result = 1;
 for (int \(i=2 ; i<=n ; i++)\{\)
 result = result * i;
 \}
 return result;
 \}

Factorial (Recursive Definition)

$$
\begin{aligned}
0! & =1 \\
1! & =1 \\
n! & =n *(n-\mathbb{1}) *(n-2) *(n-3) * \ldots * \mathbb{1} \\
& =n *(n-\mathbb{1})!
\end{aligned}
$$

Factorial (Recursive)

```
public static int factorial (int n) {
    if (n == 0) {
    return 1;
    }
    return n * factorial(n-1);
}
```


Connection to Mathematical Induction ?

Correctness

Claim: For all $n \geq 0$, the recursive factorial (n) algorithm returns n !.

Proof (by mathematical induction):

- Base case: factorial(0) returns 1.
- Induction step:
- Induction hypothesis: factorial (k) returns k ! where $k \geq 0$
- We want to prove it follows that factorial $(k+1)$ returns $(k+1)$!
- factorial (k+1) returns factorial(k)*(k+1)
$=k!*(k+1)$, by induction hypothesis
$=(k+1)!$

Example 2: Fibonacci

$$
\begin{aligned}
& 0,1,1,2,3,5,8,13,21,34,55, \ldots . \\
& F(0)=0 \\
& F(1)=1 \\
& F(n+2)=F(n+1)+F(n), \text { for } n \geq 0 . \\
& \quad \text { definition }
\end{aligned}
$$

Fibonacci (iterative)

```
public static int fibonacci(int n) {
    if(n==0 || n==1) {
        return n;
    }
    fib0 = 0;
    fib1 = 1;
    for (int i=2; i<=n; i++) {
        fib2 = fib0 + fib1;
        fib0 = fib1;
        fib1 = fib2;
    }
    return fib2;
}
```


Fibonacci (recursive)

```
public static int fibonacci (int n) {
    if(n==0 || n==1) {
        return n;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

This is simpler to express than the iterative version.

Correctness

Claim: the recursive Fibonacci algorithm is correct.

Proof:

Base case(s): verify (trivial)

Induction step: (also trivial)

Let $\mathrm{k}>1$. Induction hypothesis is that fibonacci($\mathrm{k}-1)$ returns $\mathrm{F}(\mathrm{k}-1)$ and fibonacci(k) returns F(k).

Then fibonacci($k+1$) returns $F(k-1)+F(k)$, which is indeed $F(k+1)$.

Unfortunately, the recursive Fibonacci algorithm is inefficient. It computes the same quantity many times, for example:
fibonacci(247)

fibonacci(246) fibonacci(245)

fibonacci(245) fibonacci(244) fibonacci(244) fibonacci(243)

fibonacci(244) fibonacci(243) fibonacci(243) fibonacci(242) etc
In COMP 251, you will learn a general technique called dynamic programming that avoid this inefficiency.

Example 3: Reversing a list

input
($\mathrm{a} b \mathrm{c} d \mathrm{efgh}$)
output
(hgfedcba)
How to do this recursively?

Example 3: Reversing a list

input

$$
(a b c d e f g h)
$$

output
(hgfedcba)
How to do this recursively?

$$
\begin{aligned}
a \quad & (b c d e f g h) \\
& (h g f e d c b) a
\end{aligned}
$$

Example 3: Reversing a list (recursive)

```
public static void reverse(List list) {
    if(list.size()==1) {
        return;
    }
    firstElement = list.remove(0);
    reverse(list); // this list has n-1 elements
    list.add(firstElement);
    // appends at the end of the list
}
```

Note that Java's list.add (E) returns a Boolean, which we ignore.

Example 4: Sorting a list (recursive)

```
public static void sort(List list) {
    if (list.size() == 1) {
                        return;
    }
```

Can we apply a similar idea?

Example 4: Sorting a list (recursive)

```
public static void sort(List list) {
    if (list.size() == 1) {
        return;
    }
    minElement = removeMinElement(list);
    sort(list); // now the list has n-1 elements
    list.add(0, minElement); // insert at front
}
```

Note that Java's list.add(int, E) is void. It changes the list.
You could do a similar solution by removing the max element and adding to end.

Example 5: Tower of Hanoi

Problem: Move n disks from start tower to finish tower such that:

- move one disk at a time (pop and push)
- you can push a smaller disk on top of bigger disk (but you can't push a bigger disk onto a smaller disk)

Example: $\mathrm{n}=1$

Example: $\mathrm{n}=1$

Example: $\mathrm{n}=2$

start
finish

Example: $\mathrm{n}=2$
move from A to C

move from A to B

move from C to B

Q: How to move 5 disks from tower 1 to 2 ?

Hint: Think recursively.

Example: $\mathrm{n}=5$
Somehow move 4 disks from A to C

move 1 disk from A to B

Somehow move 4 disks from C to B


```
tower(n, start, finish, other) \{
    if ( \(\mathrm{n}==1\) ) \{
    move from start to finish.
    \} else \{
        tower(n-1, start, other, finish)
        tower(1, start, finish, other)
        tower(n-1, other, finish, start)
    \}
\}
```

For example, tower (5, A, B , C)

Example: $\mathrm{n}=5 \quad$ tower $(5, \mathrm{~A}, \mathrm{~B}, \mathrm{C})$

tower (4, C, B, A)

Correctness

Claim: the tower() algorithm is correct, namely it moves the blocks from start to finish without breaking the two rules (one at a time, and can't put bigger one onto smaller one).

Proof: (sketch)
Base case: tower($\left.1,{ }^{*},{ }^{*},{ }^{*}\right)$ is correct.

Induction step:
induction hypothesis
for any $\mathrm{k}>=1$, if tower $(\mathrm{k}, *, *, *)$ is correct then tower $\left(\mathrm{k}+1,,^{*},{ }^{*},{ }^{*}\right)$ is correct. (verify by inspection of algorithm)

How many moves?

```
tower( 1, start, finish, other )
move start
to finish
```

Answer: 1

How many moves ?

Answer: $1+2$

How many moves?

Answer: $\quad 1+2+4=2^{0}+2^{1}+2^{2}$

How many moves ?

move ...

move

Answer: $1+2+4+\ldots+2^{n-1}=2^{n}-1$
(Geometric series. Recall lecture 3, slide 4.)

Recall (lecture 16): "call stack"

void mA()\{ mB() ; mC() ; \}

There is a single call stack for all methods.
void main()\{
mA();
\}

		$m B$	$m C$	
	$m A$	$m A$	$m A$	$m A$
$m A$	m	m		
main	$\underline{m a i n}$			
	$\underline{\text { main }}$			

Recursive methods \& Call stack

```
public static int factorial (int n) {
    if (n == 0) {
        return 1;
    }
    return n * factorial(n-1);
}
```

$\begin{array}{lll} & \text { factorial(0) } & \\ \text { factorial(1) } & \text { factorial(1) } & \text { factorial(1) }\end{array}$
main

```
File Edit Source Refactor Navigate Search Project Pydev Run Window Help
```



```
* Debug %
\square TestFactorial [Java Application]
    4 demos.recursion.TestFactorial at localhost:57193
        4 Thread [main] (Suspended (breakpoint at line 10 in TestFactorial))
            \ TestFactorial.factorial(int) line: 10
| TestTowerOfHanoi.java 『 TestFactorial.java }
    5\ominus static int factorial(int n) {
    6
    7 if (n <= 1)
    8 return 1;
    9
    |
11
                            return n * factorial(n-1);
    }
12

\section*{ASIDE: Stack frame (details in COMP 273)}

The call stack consists of "frames" that contain:
- the parameters passed to the method
- local variables of a method
- information about where to return ("which line number in which method in which class?")

\section*{Call stack for TestTowerOfHanoi}


\section*{19. Induction}

\section*{20. Recursion}
21. Binary Search
22. Mergesort \& Quicksort
23.Trees
24. Tree traversal
25. Binary trees
26. Binary search trees
27. Heaps 1
28. Heaps 2
29. Hashing 1 (maps)
30. Hashing 2
31.Graphs 1
32. Graphs 2
33.Big O 1
34. Big O 2
35. Big O 3
36. Recurrences 1
37. Recurrences 2

We will see recursive algorithms in all these lectures, and informally analyze computation complexity.

Here we will formally analyze the computation complexity of recursive algorithms.```

