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COMP 250

Lecture 20  

recursion 



A recursive method (or function) is a method that calls itself.

Examples we will see today:

• factorial function
• Fibonacci numbers
• reversing a list
• sorting a list
• tower of Hanoi

We will see many more examples later in the course.



Example 1:   Factorial

The factorial of a positive integer is defined as follows: 



Factorial  (iterative)
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public static int factorial (int n) {

int result = 1; 

for (int i=2; i<=n; i++) {

result = result * i;

}

return result;

}



Factorial (Recursive Definition)



Factorial (Recursive)

public static int factorial (int n) {

if (n == 0) {

return 1; 

}

return n * factorial(n-1);

}



Connection to Mathematical Induction ?

public static int factorial (int n) {

if (n == 0) {

return 1; 

}

return n * factorial(n-1);

}

base case

induction step



Correctness 
Claim:  For all the recursive factorial(n) algorithm 

returns .   

Proof (by mathematical induction):
• Base case: factorial(0) returns .

• Induction step: 
• Induction hypothesis:  factorial(k) returns  where 
• We want to prove it follows that factorial(k+1) returns 

• factorial(k+1) returns factorial(k)
, by induction hypothesis



Example 2:      Fibonacci
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0,  1, 1,  2,  3,  5,  8,  13,  21,  34,  55, ….

= 0
= 1

=   ,   for  0.
definition



Fibonacci  (iterative)
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public static int fibonacci(int n) {
if(n==0 || n==1) {

return n;
} 
fib0 = 0; 
fib1 = 1;
for (int i=2; i<=n; i++) {

fib2 = fib0 + fib1;
fib0 = fib1;
fib1 = fib2;

}
return fib2;

}



Fibonacci  (recursive)
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public static int fibonacci (int n) {
if(n==0 || n==1) {

return n;
} 
return fibonacci(n-1) + fibonacci(n-2);

}

This is simpler to express than the iterative version.  



Correctness 

Claim:   the recursive Fibonacci algorithm is correct.   

Proof:

Base case(s):   verify (trivial)

Induction step: (also trivial)

Let k > 1.   Induction hypothesis is that  fibonacci(k-1) returns F(k-1) and 
fibonacci(k) returns F(k).

Then   fibonacci(k+1)  returns F(k-1)+ F(k),  which is indeed F(k+1).
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fibonacci( 247 )

fibonacci( 246 ) fibonacci( 245 )

fibonacci( 245 ) fibonacci( 244 ) fibonacci( 244 ) fibonacci( 243)

fibonacci( 244 ) fibonacci( 243) fibonacci( 243 ) fibonacci( 242)                       etc

Unfortunately,  the recursive Fibonacci algorithm is inefficient.    
It computes the same quantity many times, for example:

In COMP 251,  you will learn a general technique called dynamic 
programming that avoid this inefficiency.



Example 3:   Reversing a list
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input                     ( a  b  c  d  e  f  g  h )

output                  ( h  g  f  e   d  c b  a  )

How to do this recursively?



Example 3:   Reversing a list
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input                     ( a  b  c  d  e  f  g  h )

output                  ( h  g  f  e   d  c b  a  )

How to do this recursively?

a         ( b  c  d  e  f  g  h )

( h  g  f  e   d  c b  )    a



Example 3:   Reversing a list  
(recursive)
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public static void reverse(List list) {
if(list.size()==1) {

return; 
}
firstElement = list.remove(0); 
reverse(list); // this list has n-1 elements
list.add(firstElement); 

// appends at the end of the list
} 

Note that Java’s list.add( E ) returns a Boolean, which we ignore.



Example 4:   Sorting a list  
(recursive)
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public static void sort(List list) {
if  (list.size() == 1) {

return; 
}

} 

Can we apply a similar idea ?



Example 4:   Sorting a list  
(recursive)
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public static void sort(List list) {
if  (list.size() == 1) {

return; 
}
minElement = removeMinElement(list); 
sort(list); // now the list has n-1 elements
list.add(0, minElement); // insert at front

} 

Note that Java’s list.add(int, E ) is void.   It changes the list.

You could do a similar solution by removing the max element and adding to end.



Example 5:   Tower of Hanoi
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Tower A
(start)

Tower B
(finish)

Tower C

Problem:     Move n  disks from start tower to finish tower such that:

- move one disk at a time  (pop and push)

- you can push a smaller disk on top of bigger disk (but you can’t push a 
bigger disk onto a smaller disk)

?
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start                                finish

Example:    n = 1
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start                                finish

start                                finish

Example:    n = 1

Example:    n = 2

?
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Example:    n = 2 move from A to C

move from A to B

move from C to B
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start                                finish

Q:   How to move 5 disks from tower 1 to 2   ?

Hint:  Think recursively.

?
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Example:    n = 5 Somehow move 4  disks  from A to C

move 1 disk from A to B

Somehow move 4  disks  from C to B
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tower(n, start, finish, other) { 

if (n==1) {
move from start to finish. 

} else {
tower(n-1, start, other, finish)
tower(1, start, finish, other)
tower(n-1, other, finish, start)

}
}

For example,  tower(5,A,B,C)
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Example:    n = 5                 tower( 5, A, B, C )

tower( 4,  A,  C,  B  )

tower(  1,  A,   B,  C)

tower( 4,  C,  B,  A)

A B C



Correctness
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Claim:   the tower( ) algorithm is correct,  namely it moves the 
blocks from start to finish without breaking the two rules (one at 
a time, and can’t put bigger one onto smaller one).  

Proof:  (sketch)

Base case:       tower( 1, *,  *, * )  is  correct.

Induction step:

for any k >= 1,    if         tower(k, *, *, *) is correct
then   tower(k + 1, *, *, *)  is correct.

(verify by inspection of algorithm)

It doesn’t matter, as long as they are different.

induction hypothesis



How many moves ?  
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tower( 1,  start, finish, other )

move start 
to finish

Answer:     1 



How many moves ? 
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tower( 2,  start, finish, other )

tower( 1, start, other, finish) tower( 1,  other, finish, start )

Answer:     1 + 2
move from A to C

move from A to B

move from C to B

move from A to C move from C to B

move from A to B



How many moves ? 
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tower( 3,  start, finish, other )

tower( 2, start, other, finish) tower( 2,  other, finish, start )move

move

movemove

Answer:

movemove

tower( 1,..) tower( 1,..) movetower( 1,..) tower( 1,..) 



How many moves ? 
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tower( ,  start, finish, other )

tower( , start, other, finish) tower( ,  other, finish, start )move

move move

movemovemovemove… …           … …          …… …

Answer: =  

… ………

(Geometric series.    Recall lecture 3, slide 4.)



Recall (lecture 16):   “call stack”
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void   mA( ) {
mB( );
mC( );

}

void  main( ){  
mA(  );

}

mB mC
mA       mA mA mA mA

main main main main main main main

There is a single call stack for all 
methods. 



Recursive methods &  Call stack
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factorial(0)
factorial(1)       factorial(1)        factorial(1)

factorial(2)       factorial(2)       factorial(2)        factorial(2)         factorial(2)
main main main main main main main

public static int factorial (int n) {

if (n == 0) {

return 1; 

}

return n * factorial(n-1);

}
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Call stack for TestFactorial

slightly different from 
previous slide

(not significant)



ASIDE:  Stack frame  
(details in COMP 273)

The call stack consists of “frames” that contain:

• the parameters passed to the method

• local variables of a method

• information about where to return (“which line 
number in which method in which class?”)
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parameters in 
current stack frame

Call stack for TestTowerOfHanoi

slightly different code 
from earlier slide
(not significant)
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19. Induction
20. Recursion
21. Binary Search
22. Mergesort & Quicksort
23. Trees
24. Tree traversal
25. Binary trees
26. Binary search trees
27. Heaps 1
28. Heaps 2
29. Hashing 1 (maps)
30. Hashing 2
31. Graphs 1
32. Graphs 2
33. Big O 1
34. Big O 2
35. Big O 3
36. Recurrences 1
37. Recurrences 2

We will see recursive algorithms in 
all these lectures, and informally 
analyze computation complexity. 

Here we will formally analyze the computation 
complexity of recursive algorithms.


