COMP 250

Lecture 16

big O, big Omega Ω, big Theta Θ

Oct. 17, 2016
Recall motivation for $O(\cdot)$

The time it takes to perform instructions depends on:

• the size of the input (n, m, N, \ldots)

• implementation details *that are unknown*
 (various constants c_1, c_2, \ldots)
Example: Grade School Addition

\[
\begin{align*}
carry &= 0 \\
\textbf{for} & \ i = 0 \ \textbf{to} \ N - 1 \ \textbf{do} \\
& \quad r[i] \leftarrow (a[i] + b[i] + carry) \mod 10 \\
& \quad carry \leftarrow (a[i] + b[i] + carry)/10 \\
\textbf{end for} \\
r[N] & \leftarrow carry
\end{align*}
\]
Example: Grade School Addition

\[t(n) = c_0 + c_1 N \]

Constants \(c_0, c_1 \) ... include time for:

- Primitive ops +, -, *, /, %
- Array address indexing
- Array get or set
- Assignment
- For loop administration
- Recursive call administration
-
Recall last lecture: big O

\[t(n) \text{ is } O(g(n)). \]
Formal Definition of Big O

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$. We say $t(n)$ is $O(g(n))$, if there exist two positive constants n_0 and c such that, for all $n \geq n_0$, $t(n) \leq c \cdot g(n)$.
Never write $O(3n)$, $O(5 \log_2 n)$, etc.

The point of big O notation is to avoid dealing with constants.

It is still *technically* correct to write the above. We just don’t do it.
Sets of $O()$ functions

If $n \geq 4$ then:

$$1 < \log_2 n < n < n \log_2 n < n^2 < n^3 < \ldots < 2^n < n!$$
Sets of $O()$ functions

If $n \geq 4$ then:

$$1 < \log_2 n < n < n \log_2 n < n^2 < n^3 < \ldots < 2^n < n!$$

Suppose $t(n)$ is $O(g(n))$, and $g(n) < h(n)$ for $n \geq n_0$.

Then, $t(n)$ is $O(h(n))$.

e.g. if $t(n)$ is $O(n)$, then $t(n)$ is $O(n^2), O(n^3), \ldots$
Sets of $O()$ functions

If $t(n)$ is $O(g(n))$, one often writes $t(n) \in O(g(n))$,

That is, $t(n)$ is a member of the set of functions that are $O(g(n))$.
Sets of $O()$ functions

We have the following strict subset relationships:

$$O(1) \subset O(\log_2 n) \subset O(n) \subset O(n \log_2 n) \subset O(n^2) \ldots$$

$$\subset O(n^3) \subset \ldots \subset O(2^n) \subset O(n!)$$
Asymptotic lower bound

The constant n_0 is not unique.
Preliminary Definition

$t(n)$ is asymptotically bounded below by $g(n)$ if there exists an n_0 such that, for all $n \geq n_0$,

$$t(n) \geq g(n).$$
Example: \(t(n) = \frac{n(n-1)}{2} \) is asymptotically bounded below by \(g(n) = \frac{n^2}{4} \).

Proof:

\[
\frac{n(n-1)}{2} \geq \frac{n^2}{4}
\]

\(\Leftrightarrow\)

\(2n(n - 1) \geq n^2\)

\(\Leftrightarrow\)

\(n^2 \geq 2n\)

\(\Leftrightarrow\)

\(n \geq 2\) \quad \text{So take } n_0 = 2.\)
Definition of Big Omega (Ω)

Let $t(n)$ and $g(n)$ be two functions of $n \geq 0$.

We say $t(n)$ is $\Omega(g(n))$, if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \geq c \cdot g(n).$$
Claim: \(\frac{n(n-1)}{2} \) is \(\Omega(n^2) \).

Proof (1): Use \(c = \frac{1}{4} \) from two slides ago.

\[
\frac{n(n-1)}{2} \geq \frac{n^2}{4}
\]

\[\iff\quad n \geq 2\]

So take \(n_0 = 2, \quad c = \frac{1}{4}. \)
Claim: \(\frac{n(n-1)}{2} \) is \(\Omega(n^2) \).

Proof (2): Try \(c = \frac{1}{3} \)

\[
\frac{n(n-1)}{2} \geq \frac{n^2}{3}
\]

\[\iff n \geq 3 \quad \text{So take } n_0 = 3, \quad c = \frac{1}{3} .\]
Sets of $\Omega(\cdot)$ functions

Claim: Suppose $t(n)$ is $\Omega(g(n))$, and $g(n) > h(n)$ for $n \geq n_0$.

Then, $t(n)$ is $\Omega(h(n))$. Proof follows straight from definition.

e.g. if $t(n)$ is $\Omega(n^3)$, then $t(n)$ is $\Omega(1)$, $\Omega(n)$, ..., $\Omega(n^2)$
Sets of $\Omega()$ functions

If $t(n)$ is $\Omega(g(n))$, one often writes $t(n) \in \Omega(g(n))$.

That is, $t(n)$ is a member of the set of functions that are $\Omega(g(n))$.
Sets of $\Omega(\cdot)$ functions

Thus, we have the following strict subset relationships:

$\Omega(1) \subset \Omega(\log_2 n) \subset \Omega(n) \subset \Omega(n \log_2 n) \subset \Omega(n^2) \ldots$

$\subset \Omega(n^3) \subset \ldots \Omega(2^n) \subset \Omega(n!)$
Definition of Big Theta (Θ)

Let \(t(n) \) and \(g(n) \) be two functions of \(n \geq 0 \).

We say \(t(n) \) is \(\Theta(g(n)) \), if there exist three positive constants \(n_0, c_1, c_2 \) such that for all \(n \geq n_0 \),

\[
c_1 \ g(n) \leq t(n) \leq c_2 \ g(n)
\]
Definition of Big Theta (Θ)

Let $t(n)$ and $g(n)$ be two functions of $n \geq 0$.

We say $t(n)$ is $\Omega(g(n))$, if there exist three positive constants n_0, c_1, c_2 such that for all $n \geq n_0$,

$$c_1 \cdot g(n) \leq t(n) \leq c_2 \cdot g(n)$$

$t(n)$ is $O(g(n))$
Definition of Big Theta (Θ)

Let $t(n)$ and $g(n)$ be two functions of $n \geq 0$.

We say $t(n)$ is $\Omega(g(n))$, if there exist three positive constants n_0, c_1, c_2 such that for all $n \geq n_0$,

$$c_1 g(n) \leq t(n) \leq c_2 g(n)$$

$t(n)$ is $\Omega(g(n))$
Example

\[t(n) \text{ is } \Theta(g(n)). \]
Example

Let \(t(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2} \)

\(t(n) \) is \(\Theta(\ ? \) \).
Example

Let \(t(n) = 4 + 17 \log_2 n + 3n + 9n \log_2 n + \frac{n(n-1)}{2} \).

Claim: \(t(n) \) is \(\Theta(n^2) \).

Proof:

\[
\frac{n^2}{4} \leq t(n) \leq (4 + 17 + 3 + 9 + \frac{1}{2})n^2
\]
Can we write \(\Theta() \) for every \(t(n) \)?

No, as this contrived example shows:

Let \(t(n) = \begin{cases}
 n, & n \text{ is odd} \\
 n^2, & n \text{ is even.}
\end{cases} \)

\(t(n) \) is \(O(n^2) \) but not \(O(n) \).

\(t(n) \) is \(\Omega(n) \) but not \(\Omega(n^2) \).

There does not exist a \(\Theta() \) bound for this \(t(n) \).
Algorithm best and worst cases

vs.

$\Theta()$, $\Omega()$, $\Theta()$.

What is relationship between these ideas? See Exercises.
Sets of $\Theta()$ functions

If $t(n)$ is $\Theta(g(n))$, one often writes $t(n) \in \Theta(g(n))$,

That is, $t(n)$ is a member of the set of functions that are $\Theta(g(n))$.

\[\Theta(1), \Theta(\log_2 n), \Theta(n), \ldots, \Theta(2^n), \Theta(n!)\]