COMP 250

Lecture 16

interface examples:
Comparable, Iterable & Iterator

Feb. 11, 2022

Recall: Java interface

interface isareserved word in the Java language.
A Java is interface like a class, but the methods have no bodies.

eg. List<T>

ArrayList<T> and LinkedList<T> implement List<T>.

Java Comparable interface

Suppose you want to define an ordering on objects of some
class.

Sorted lists and other data structures we’ll see later
all require that an

ordering exists.

You cannot use the “<“ operator to compare objects.

Comparable interface

interface Comparable<T> {
int compareTo(T t)

It is part of the java.lang package (see API)

It has a generic type, like List<T>.

e.g. String 1mplements Comparable<T>

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

The natural ordering on strings is called the lexigraphic ordering (like in a dictionary).

'compareTo

public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each character in the strings. The character
sequence represented by this string object is compared lexicographically to the character sequence represented by the argument
string. The result is a negative integer if this String object lexicographically precedes the argument string. The result is a positive
integer if this string object lexicographically follows the argument string. The result is zero if the strings are equal; compareTo returns @
exactly when the equals(0bject) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have different characters at some index that is
a valid index for both strings, or their lengths are different, or both. If they have different characters at one or more index positions, let k
be the smallest such index; then the string whose character at position k has the smaller value, as determined by using the < operator,
lexicographically precedes the other string. In this case, compareTo returns the difference of the two character values at position k in the
two string -- that is, the value:

this.charAt(k)-anotherString.charat(k)
If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. In this case,
compareTo returns the difference of the lengths of the strings -- that is, the value:

this.length()-anothersString.length()

Comparable recommendation

Suppose class T implements Comparable<T>
T el, e’;

Java APl recommends el . compareTo (e2) returns:

negative number, if el < e2
40, if el.equals(e2) istrue
positive number, if el > e2

Note “>"” and “<“ here do not refer to a Java operation, but rather to
our model (in our heads) of the ordering.

Example: Circle

Q: How can we definea compareTo(Circle) and

equals (..) method for ordering Circle objects?

A: Compare their radii.

public class Circle extends Shape implements

Comparable<Circle>{
private double radius;

public Circle (double radius) {
this.radius = radius; }

public int compareTo (Circle c) {
if (this.radius > c.radius)
return 1;

else 1f (this.radius == c.radius)
return 0O;
else \\
return -1; equivalentto this.equals (c)

public boolean equals (Object obj) {
return (obj instanceof Circle) &é&
this.radius ==((Circle) obj) .radius;

Example: Rectangle

Q: When are two Rectangle objects equal ?

A: Their heights are equal and their widths are equal.

However, there is no unique and natural way to define a
compareTo () method for ordering Rectangle objects.

e.g. the left one has a larger width but smaller height

Example : Ork

Suppose we have created a new data type Ork.

How should we compare elements of this type?

Based on their weapon? height? name?

10

Ork.compareTo () -- based on height only ?

public class Ork implements Comparable<Ork> {
private Weapon w;
private Integer height;
private String name;

public 1nt compareTo (Ork o) ({
if (this.height > o.height) {
return 1;
} else if (this.height == o.height) {
return O;
} else { return -1; }

}

But we let’s say we want to consider two Orcs to be “equal” only if they have
the same weapon, height, and name. Then, the above compareTo ()
method would violate the Java APlI recommendation that

el .compareTo(e2) is 0 ifandonlyif el.equals (e2) istrue.

Orc.compareTo () —based on all attributes

public class Ork implements Comparable<Ork> {
private ;
private Integer height;
private String name;

public int compareTo (Ork o) ({
int result = this.
1f (result==0) {

result = this.height.compareTo(o.height) ;
}
if (result == 0) {
result = this.name.compareTo(o.name) ;

}

return result;

Note this definition uses overloaded methods for
compareTo (), namely for classes Weapon, Integer, String.

12

How is Comparable used?

interface Comparable<T> {

int compareTo(T e)

This interface will be used later when we wish to sort and/or
search a collection of (comparable) elements.

ASIDE: the Java Collections class is used for this.

COMP 250

Lecture 16

interface examples:
Iterable & lterator

Feb. 11, 2022

Recall: Java enhanced for loop

double dArray = {1.0, 7.5, -2.67, 5.999};

for (double d : dArray) {
System.out.println(4d);

}

LinkedList<String> list = new LinkedList<String>();

for (String S : list) {
System.out.println(s);
}

More generally....

We often want to visit (or “iterate through”) all the objects in
some collection of objects.

e arraylist
e linked list

Tterator and Iterable

* The enhanced for loop (for-each) makes use of two
interfaces: ITteratorand Iterable.

 We can implement these interfaces for our own classes, and
iterate through a collection using the enhanced for loop, or
in other ways.

Tterator interface

interface Iterator<T> {
boolean hasNext () ;

T next () ; // returns current element
// and advances to the next

next ()is a method, rather than a field.

Example: Singly Linked Lists

class SLinkedList<E> | implements Iterable<E>({

SNode<E> head; ,
explained soon...
class SNode<E> {
SNode<E> next;
E element;

// etc

}
class SLL Iterator<E> implements Iterator<E>{

// implements the hasNext () and next () methods

19

An SLL Iterator object will reference a node in the singly

linked list.
(
head
size
4
_

=
e

J

Q: How many objects do we have here ?

A:

1+1+4+4=10

20

\

head

size

J

L I

The SLL Iterator object will iterate through the nodes and
return the element referenced by each node.

21

SLL Iterator implementation

class implements Iterator<E>{

SNode<E> cur,; cur

(SLinkedList<E> 1list) { E%\\\

cur = list.getHead();

O =@
} () / Y
head a = @&
. | A
public boolean hasNext () { — 1. A
return (cur != null); size T
} Ca = .
——)
public E next () { ;éj
E element = cur.getElement; list
cur = cur.getNext ()

return element;

}

Don’t confuse use of “next()” and “hasNext()” above with how “next” is used in linked lists.

SLL Iterator constructor

Q: Who constructsan SLL Iterator object ?

A: A SLinkedList object does this, similar to how it constructs
a hew SNode when it adds a new element to the list.
See next slide.

Java Iterable interface

interface Iterable<T> {

ITterator<T> 1terator () ;
}

We say “a class is iterable” if it can make/construct an Iterator
object that can iterate over its elements.

So, if aclass implements ITterable, then this class has an
iterator () method, which constructs an Tterator object.

24

Let’s add the iterator () method to the singly linked list class.

class SLinkedList<E> implements Iterable<E> ({
SNode<E> head;
class SNode<E> {
SNode<E> next;

E element;
// etc

class SLL Iterator<E> implements Iterator<E>({

// implements the hasNext () and next () methods
// (see earlier slides)

}

SLL Iterator<E> iterator () { —

(this) ;
Yo

Example 1 List

-
Suppose a method in some class has this code: 4 head<\
—E 1]
SLinkedList<Shape> list; size
Shape S;]
. J

// make a list

list

Iterator<Shape> = list.iterator(); s ~
head

size

SLinkedList<Shape> list;
Shape S; list

// make a list

-

Iterator<Shape> = list.iterator(); s ~
head
s = .next () —E—]
size

Note that s references the first element! N 4 y

S
[| L —T1+— «— |

SLinkedList<Shape> list;
Shape S; list

// make a list

e
Iterator<Shape> = list.iterator(); s ~
head
s = .next () —E—]
Size
_ 4
s = .next () N y

Note that s references the second element!

SLinkedList<Shape>
Shape S;
// make a list

Iterator<Shape>
s = .next ()
s = .next ()
s = .next ()

list;

—

list.iterator();

list

head

size

30

Example 2

What if we want to have multiple “iterators” ?

Analogy: Multiple TA’s grading a collection of exams.

SLinkedList<Shape>
Shape S;

Iterator<Shape>
Iterator<Shape>

list;

= list.iterator();
= list.iterator():;

=
IZI/

) (U] [

® b @) ¢

32

SLinkedList<Shape> list;

Shape S;

Iterator<Shape> = list.iterator();
Iterator<Shape> = list.iterator();
s = .next ()

—

| | =1

— v
1 [F—

v
1 [FH—

v
1 [—FH{—

v

The iterators iterate over SNodes, not Shapes.
The next () method returns a reference to a Shape.

®) ¢

33

SLinkedList<Shape> list;

Shape S;

Iterator<Shape> = list.iterator();
Iterator<Shape> = list.iterator();

s = .next ()

s = .next ()

s = .next () —

s = .next () — ‘
s = .next ()

v

The iterators iterate over SNodes, not Shapes.
The next () method returns a reference to a Shape.

34

java.util

interface
Iterator<E>

next() : E
hasNext() : boolean

A Big Picture

java.lang

interface
Ilterable<E>

iterator()

t
|
|
|

implements

class
SLLIterator<E>

next() : SNode
hasNext() : boolean

t

I implements

class
SLinkedList<E>

iterator() : SLLIterator

~
. ~
| implements N
class class
LinkedList<E> ArrayList<E>
java.util java.util

Coming up...

Lectures Assessments
Mon. Feb.14 Stacks Assignment 1
- due today

Wed. Feb.16 Queues

Quiz 2 closes at 8 pm (finish by then)
Fri. Feb. 18 Mathematical Induction

Assignment 2 will be posted today
(The following week we start recursion.))

36

