
1

COMP 250

Lecture 12

Algorithms for Sorting a List:
bubble sort

selection sort
insertion sort

Feb. 2, 2022

Example 1: sorting exams by last name

2

3

Example 2: Email packets

When you send a large file by email, it gets broken
down into small pieces called “packets” and each packet
takes an independent network path to the destination.

Then the packets need to be put together again in their
correct order.

https://computer.howstuffworks.com/question525.htm

https://computer.howstuffworks.com/question525.htm

4

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Some sorting algorithms are faster than others.
See visualization:

Barak Obama knows about sorting…

https://www.youtube.com/watch?v=k4RRi_ntQc8

https://www.youtube.com/watch?v=ZZuD6iUe3Pc
https://www.youtube.com/watch?v=k4RRi_ntQc8

Sorting Algorithms

• Bubble sort

• Selection sort today 𝑂(𝑁2)

• Insertion sort

• Mergesort

• Heapsort later 𝑂(𝑁 log 𝑁)

• Quicksort

5

Sorting Algorithms

Today we are concerned with algorithms, not data structures.

Today’s algorithms can be implemented easily using an array
list or a (doubly) linked list.

6

3
17
-5
-2
23

4

-5
-2
3
4

17
23

Notation for today...

7

BEFORE AFTER

0

1

2

3

4

5

sort into
increasing
order

Bubble Sort

Given a list of size N, arrange the elements in increasing order.

Pass through the list N times.

For each pass,

if two neighboring elements are in the wrong order,

then swap them.

8

The name invokes the (vague)
metaphor of bubbles rising in a liquid.

Bubble Sort Algorithm

for 𝑖 = 0 to 𝑁 − 1 { // i-th pass

for k = 0 to 𝑁 − 2 {

if (list[k] > list[k+1]) { // wrong order

list.swap(k, k+1)

}

}

}

9

3
17
-5
23
-2
4

Example: first pass

if list[0] > list[1] // wrong order
swap(list[0], list[1])

0

1

2

3

4

5

3
17
-5
23
-2
4

Example: first pass

11

3
17
-5
23
-2
4

if list[1] > list[2]
list.swap(1, 2)

0

1

2

3

4

5

Indicates
elements need
to be swapped

3
17
-5
23
-2
4

Example: first pass

12

3
17
-5
23
-2
4

3
-5
17
23
-2
4

3
-5
17
23
-2
4

3
-5
17
-2
23

4

3
-5
17
-2
4

23

0

1

2

3

4

5

swap swap swap

Smallest element moves up*

13

3
17
-5
23
-2
4

3
17
-5
23
-2
4

3
-5
17
23
-2
4

3
-5
17
23
-2
4

3
-5
17
-2
23

4

3
-5
17
-2
4

23

0

1

2

3

4

5

*assuming it wasn’t already at the front of the list

Largest element moves down *

14

0

1

2

3

4

5

3
17
-5
23
-2
4

3
17
-5
23
-2
4

3
-5
17
23
-2
4

3
-5
17
23
-2
4

3
-5
17
-2
23

4

3
-5
-2
17
4

23

0

1

2

3

4

5

*assuming it wasn’t already at the end of the list

What can we say at end of the first pass?

Q: Where is the largest element ?

A: It must be at the end of the list (position N-1).

Q: Where is the smallest element ?

A: Could be anywhere except position N-1.

15

Bubble Sort Algorithm
for 𝑖 = 0 to 𝑁 − 1 {

for k = 0 to 𝑁 − 2 − 𝑖 {

if (list[k] > list[k+1]) {

list.swap(k, k+1)

}

}

}

Before pass 𝑖, the largest 𝑖 elements must already be in their
correct position at the end of the list.

Thus, the inner loop can get shorter each time.

16

Bubble Sort Algorithm
for 𝑖 = 0 to 𝑁 − 2 {

for k = 0 to 𝑁 − 2 − 𝑖 {

if (list[k] > list[k+1]) {

list.swap(k, k+1)

}

}

}

The outer loop only needs to run 𝑁 − 1 times.

(If the largest 𝑁 − 1 elements are in their correct position, then the smallest
element must also be in it correct position.)

17

Bubble Sort Algorithm
// You don’t always need to make 𝑁 − 1 passes in outer loop.

for i = 0 to 𝑁 − 2 {

swapped = false

for k = 0 to 𝑁 − 2 – i {

if (list[k] > list[k+1]) {

list.swap(k, k+1)

swapped = true

}

}

if !(swapped)

break // return

}
18

19

Bubblesort

We can
terminate outer
loop if there are
no swaps during
a pass.

Outer loop

Inner
loop

Inner
loop

Best
case

Worst
case

Gray regions in the
square indicate the
indicies examined
through each pass
through the inner loop.

Time Complexity ?

20

COMP 250

Lecture 12

Algorithms for Sorting a List:
bubble sort

selection sort
insertion sort

Feb. 2, 2022

Selection Sort

Partition the list into two parts:
- the first part contains the smallest elements and is sorted

- the second part contains “the rest” of the elements

(not necessarily sorted)

The sorted part is initially empty.

Repeat 𝑁 − 1 times {

- find the smallest element in “the rest”

- swap that element with the first element in “the rest”,

- this expands the first part of the list by 1

21

3
17
-5
-2
23

4

Example

22

rest

sorted part is empty

0

1

2

3

4

5

3
17
-5
-2
23

4

Example

23

rest

sorted part is empty

0

1

2

3

4

5

minimum element in “rest”

3
17
-5
-2
23

4

Example

24

-5
17
3

-2
23

4

sorted

rest

0

1

2

3

4

5

swap

3
17
-5
-2
23

4

Example

25

-5
17
3

-2
23

4

-5
-2
3

17
23

4

sorted

rest

0

1

2

3

4

5

swap

3
17
-5
-2
23

4

Example

26

-5
17
3

-2
23

4

-5
-2
3

17
23

4

-5
-2
3

17
23

4
rest

sorted

0

1

2

3

4

5

3 is the minimum
element already

3
17
-5
-2
23

4

Example

27

-5
17
3

-2
23

4

-5
-2
3

17
23

4

-5
-2
3

17
23

4

-5
-2
3
4

23
17

rest

sorted

0

1

2

3

4

5

swap

3
17
-5
-2
23

4

Example

28

-5
17
3

-2
23

4

-5
-2
3

17
23

4

-5
-2
3

17
23

4

-5
-2
3
4

23
17

-5
-2
3
4

17
23

rest

sorted

0

1

2

3

4

5

swap

Selection Sort

for 𝑖 = 0 to 𝑁 − 2 {

index = 𝑖
minValue = list[𝑖]

for k = 𝑖 + 1 to 𝑁 − 1 {

if (list[k] < minValue){
minValue = list[k]
index = k

}
}
if (𝑖 != index)

list.swap(𝑖, index)
}

repeat 𝑁 − 1 times

Take the first element in the rest and let
it be the temporary min value.

For each other element in rest,

if element is smaller than the min value,
then it will becomes the new min value.
So remember its index.

Swap (if it is necessary)

29

Selection Sort

for 𝑖 = 0 to 𝑁 − 2 {

index = 𝑖
minValue = list[𝑖]

for k = 𝑖 + 1 to 𝑁 − 1 {

if (list[k] < minValue){
minValue = list[k]
index = k

}
}
if (𝑖 != index)

list.swap(𝑖, index)
}

This is the bottleneck
(the inner loop).

30

Selection Sort

for 𝑖 = 0 to 𝑁 − 2

for k = 𝑖 + 1 to 𝑁 − 1

{ }

Q: how many times does { } get executed?

A: 𝑁 − 1 + 𝑁 − 2 + 𝑁 − 3 + …. + 2 + 1

= 𝑁 (𝑁 − 1) / 2

31

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 𝑁 − 2

32

Bubblesort Selection sort

We can
terminate outer
loop if there are
no swaps during
a pass.

Outer loop Outer loop

Inner
loop

Inner
loop

Best
case

Worst
case

same

Insertion Sort

for 𝑖 = 1 to 𝑁 − 1 {

Insert element list[𝑖] into its correct position with

respect to the list elements at indices 0 to 𝑖 – 1

(At the start of pass 𝑖, the elements at indices 0

to 𝑖 − 1 are sorted only amongst themselves.

This is a weaker condition than in selection sort.)

}

33

3
17
-5
-2
23
4

34

Initial list

0

1

2

3

4

5

3
17
-5
-2
23
4

-5
3

17
-2
23
4

35

0

1

2

3

4

5

𝑖 = 1 𝑖 = 2 𝑖 = 3

-5
3
17
-2
23
4

3
17
-5
-2
23
4

(At the start of pass 𝟑, the
elements at indices 0 to
2 are sorted amongst
themselves.

Initial list

Insert element i into
its correct position

with respect to 0 to i-1

-5
3

17
-2
23
4

-5
-2
3

17
23
4

36

0

1

2

3

4

5

3
17
-5
-2
23
4

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

-5
17
3
-2
23
4

3
17
-5
-2
23
4

Initial list

(At the start
of pass 𝟒,
the
elements at
indices 0 to
3 are sorted
amongst
themselves.

37

Mechanism is similar to inserting (adding)
an element to an array list:

Shift all elements forward by one position
to make a hole, and then fill the hole.

Insertion Sort

38

for 𝑖 = 1 to 𝑁 − 1{ // index of element to move
e = list[𝑖] // store as tmp
k = 𝑖
while (k > 0) and (e < list[k - 1]){

list[k] = list[k - 1] // move it forward
k = k -1

}
list[k] = e

}

Time Complexity

39

Insertion sort

Best
case

Worst
case

Bubble sort Selection sort

Outer loop Outer loop

Inner
loop

Inner
loop

Outer loop

Best case(s) : bubble and insertion sort are O 𝑁 , selection sort is O(𝑁2).
Worst case : each of the three algorithms is O(𝑁2).

Sorting Algorithms

• Bubble sort

• Selection sort today 𝑂(𝑁2)

• Insertion sort

• Mergesort

• Heapsort lectures 22, 28 𝑂(𝑁 log 𝑁)

• Quicksort

40

41

Hector Tutorial TODAY on Zoom at 6 pm

