COMP 250

Lecture 12

Algorithms for Sorting a List:

bubble sort
selection sort
Insertion sort

Feb. 2, 2022

Example 1: sorting exams by last name

Example 2: Email packets

When you send a large file by email, it gets broken
down into small pieces called “packets” and each packet
takes an independent network path to the destination.

Then the packets need to be put together again in their
correct order.

https://computer.howstuffworks.com/question525.htm

https://computer.howstuffworks.com/question525.htm

Some sorting algorithms are faster than others.
See visualization:

https://www.youtube.com/watch?v=2ZuD6iUe3Pc

Barak Obama knows about sorting...

https://www.youtube.com/watch?v=k4RRi ntQc8

https://www.youtube.com/watch?v=ZZuD6iUe3Pc
https://www.youtube.com/watch?v=k4RRi_ntQc8

Sorting Algorithms

e Bubble sort
e Selectionsort - today O(N?)
* Insertion sort

—

Sorting Algorithms

Today we are concerned with algorithms, not data structures.

Today’s algorithms can be implemented easily using an array
list or a (doubly) linked list.

Notation for today...

BEFORE AFTER
3 -5
17 -2
5 e | |3
_2 order 4
23 17
4 | 23

Bubble Sort

Given a list of size N, arrange the elements in increasing order.

Pass through the list N times.

For each pass,
if two neighboring elements are in the wrong order,
then swap them.

©

." () The name invokes the (vague)
m &) metaphor of bubbles rising in a liquid.
a2
&

Bubble Sort Algorithm

fori =0 to N —1{ // i-th pass
fork=0to N —2 {
if (list[k] > list[k+1]){ // wrong order
list.swap(k, k+1)

J
}
J

Example: first pass

if listfO]>list[1]
swap(list[0], list[1])

Example: first pass

3

17
-5

23
-2
A

if list[1]>list[2]
list.swap(1, 2)

Indicates
elements need
to be swapped

Example:

3 3
17N | -5
-5 r 17
23 23
-2 -2

4 4

swap

first pass

3
-5
17

23
-2

3
-5
17
-2

A

23 |
4/

3
17
5)
23
-2
A

Smallest element moves up*

o

3
S,
17
23
-2

A

3
S,
17
23
-2

A

*assuming it wasn’t already at the front of the list

Largest element moves down *

*assuming it wasn’t already at the end of the list

What can we say at end of the first pass?

Q: Where is the largest element ?
A: |t must be at the end of the list (position N-1).
Q: Where is the smallest element ?

A: Could be anywhere except position N-1.

Bubble Sort Algorithm

fori =0toN —1{
fork=0to N—2 —1 {
if (list[k] > list[k+1]) {
list.swap(k, k+1)

}

Before pass i, the largest i elements must already be in their
correct position at the end of the list.

Thus, the inner loop can get shorter each time.

16

Bubble Sort Algorithm

fori =0to N — 2 {
fork=0to N—2—1i {
if (list[k] > list[k+1]) {
list.swap(k, k+1)

}

The outer loop only needs to run N — 1 times.

17

Bubble Sort Algorithm

// You don’t always need to make N — 1 passes in outer loop.

fori =0to N — 2 {
swapped = false
fork=0toN —2 — i {
if (list[k] > list[k+1]) {
list.swap(k, k+1)
swapped = true

}
if l(swapped)

break

18

Inner
loop

Inner
loop

Time Complexity 7

Bubblesort

We can
terminate outer
loop if there are
no swaps during
a pass.

»
>

Outer loop

Best
case

Worst
case

Gray regions in the
square indicate the
indicies examined
through each pass
through the inner loop.

COMP 250

Lecture 12

Algorithms for Sorting a List:

selection sort
Insertion sort

Feb. 2, 2022

Selection Sort

Partition the list into two parts:
- the first part contains the smallest elements and is sorted
- the second part contains “the rest” of the elements

The sorted part is initially empty.

Repeat N — 1 times {
- find the smallest element in “the rest”
- swap that element with the first element in “the rest”,
- this expands the first part of the list by 1

Example

sorted part is empty

—_

3
17
-5
-2
23

A

__ rest

Example

sorted part is empty

3
17
(5
-2
23

A

_

minimum element in “rest”
/

__ rest

23

Example

} sorted

_

rest

Example

swap

—_

-5
— sorted
_2 N
>< 3 \
17
23 — rest
A

5| -5
2| | -2
(3 3
17 | | 17
23 | | 23

4| 4

3 is the minimum
element already

_/

— sorted

rest

— sorted

— rest

swap

sorted

T

\|J> rest

Selection Sort

fori=0toN — 2 {

index =i
. . " /

minValue = list[i]

fork=i4+1 toN —1 {

if (list[k] < minValue){
minValue = list[k]
index =k
}
}
if (i!=index)
list.swap(i, index)

repeat N — 1 times

Take the first element in the rest and let
it be the temporary min value.

For each other element in rest,
if element is smaller than the min value,

then it will becomes the new min value.
So remember its index.

Swap (if it is necessary)

29

fori=0toN — 2{

index =1
minValue = list[i]

Selection Sort

fork=i4+1 toN—1 {

if (list[k] < minValue){

minValue = list[k]
index = k
}
}

if (i !'=index)

A

This is the bottleneck
(the inner loop).

list.swap(i, index)

30

Selection Sort

fori=0toN —2
fork=i+1 toN-—-1
{...}

Q: how manytimes does {.... } get executed?
A: N—1 +N—-2+N-3 + ... +2+1
1 ! 1 1

i =20 i=1 i =2 I =N-—-2

N(N—-1)/2

31

Inner
loop

Inner
loop

Bubblesort

We can
terminate outer
loop if there are
no swaps during
a pass.

»
>

Outer loop

Selection sort

»
»

Outer loop

Best
case

Worst
case

Insertion Sort
fori =1 toN —1{

Insert element list[i] into its correct position with

respect to the list elements at indicesOtoi—1

Initial list

3
17
-5
-2
23
A

Initial list

(At the start of pass 3, the
elements at indices O to

2 are sorted amongst
themselves.

35

Initial list

Insert element i into
its correct position
with respect to O to i-1

[=3 1 =4
5| —[5 | e
3 -2 ZT(eementsat
17 3|
-2 17 | themselves

23 23

4 4

36

Mechanism is similar to inserting (adding)
an element to an array list:

Shift all elements forward by one position
to make a hole, and then fill the hole.

Insertion Sort

fori=1to N — 1{
e= list[i] // store as tmp
k=1
while (k > 0) and (e < list[k- 1])
list[k] = list[k - 1]
k =k-1
}
list[k] = e
}

Time Complexity

Bubble sort Selection sort Insertion sort

Inner ‘ Best
loop

case
Inner Worst
loop

case

Outer loop Outer loop Outer loop

Best case(s) : bubble and insertion sort are O(N), selection sort is O(N?2).
Worst case : each of the three algorithms is O(N?2).

Sorting Algorithms

* Mergesort
* Heapsort lectures 22,28 O(N log N)
* Quicksort

Hector Tutorial TODAY on Zoom at 6 pm

Q. Search A1 Tutorial #230

s STAFF
Héctor Leos * *

Filter v
"3 PDF change -- policy on waitlist filling up o 0 A1 UNPIN STAR

a day ago in Assignments -

Assignments - A1 Michael Langer sTaFF 3d

Hey all!

20 A1 Tutorial b 4 , .
I'll host a tutorial for A1, mainly to help you

conceptually, go over some examples, and t
o some advice about how to implement your :
=| A1 - Printing Course and usual NullPointe... # take place tomorrow, Feb 2, at 6pm. Here'
Assignments - A1 Héctor Leos Sl 2d 1 join: https://mcgill.zoom.us/j/6327362007

Assignments - A1 Héctor Leos STAFF 1d

41

