COMP 250

Lecture 12

recursion 2:

power, binary search

Oct. 4/5, 2017
Recall: Converting to binary (iterative)

\[k = 0 \]
while \(n > 0 \) {
 \[b[k] = n \% 2 \]
 \[n = n / 2 \]
 \[k++ \]
}

Recall that \(n \) in binary needs approximately \(\log_2 n \) bits.
Converting to binary (recursive)

```plaintext
toBinary( n ){
    if n > 0 {
        print n % 2
        toBinary( n / 2 )
    }
}

// prints b[ k ], k = 0, 1, .....
Power \quad (x^n)

Let \( x \) a positive integer and let \( n \) be a positive number. 
\( x \) has some number of bits e.g. 32.

\[
\text{power}(x, n)\{ \quad // \text{ iterative} \\
\quad \text{result} = 1 \\
\quad \text{for \ i = 1 \ to \ n} \\
\quad \quad \text{result} = \text{result} \ * \ x \\
\quad \text{return \ result} \\
\}
\]
How to compute power() using recursion?

Example

\[ x^{18} = x^{17} \times x \]
How to compute power() using recursion?

More interesting approach:

\[ x^{18} = x^9 \times x^9 \]

\[ x^9 = x^4 \times x^4 \times x \]

\[ x^4 = x^2 \times x^2 \]
power( x, n ){       // recursive
  if n == 0
    return 1
  else if  n == 1
    return x
  else{
    tmp = power( x, n/2 )       // n/2 is integer division
    if n is even
      return tmp*tmp          // one multiplication
    else
      return tmp*tmp*x        // two multiplications
  }
}
Example: \( x^{243} \)

\[
n = (243)_{10} = (11110011)_{2}
\]

Number of multiplies is \( 5 \times 2 + 2 \times 1 = 12 \). Why?

The highest order bit is the base case, and doesn’t require a multiplication.
The recursive method uses fewer multiplications
than the iterative method, and thus the recursive
method *seems faster.*

Q: Is this recursive method indeed faster?

A: No. Why not?
Hint: Let $x$ be a positive integer with $M$ digits.

$x^2$ has about $\ ?$ digits.

$x^3$ has about $\ ?$ digits.

$\vdots$

$x^n$ has about $\ ?$ digits.
Hint: Let $x$ be a positive integer with $M$ digits.

$x^2$ has about $2M$ digits.

$x^3$ has about $3M$ digits.

$x^n$ has about $n \times M$ digits.

*We cannot assume that multiplication takes ‘constant’ time.*

Taking large powers gives very large numbers.

In Java, use the BigInteger class.

(See Exercises for more details.)
Binary Search

Input:

• a *sorted* list of size n
• the value that we are searching for

Output:

If the value is in the list, *return its index*. Otherwise, *return* -1.
Binary Search

Example: Search for 17.

What is an efficient way to do this?
Think of how you search for a term in an index. Do you start at the beginning and then scan through to the end? (No.)
Examine the item at the middle position of the list.

\[
\begin{array}{c|c}
\text{compare 17 to} & 25 \\
\hline
-75 & \text{low = 0} \\
-31 & \\
-26 & \\
-4 & \\
1 & \\
6 & \\
25 & \text{mid = (low + high) / 2} \\
26 & \\
28 & \\
39 & \\
72 & \\
141 & \\
290 & \\
300 & \text{high = size - 1}
\end{array}
\]
search for 17 here

low = 0
mid = (low + high) / 2
high = size - 1

-75
-31
-26
-4
1
6
25
26
28
39
72
141
290
300
compare 17 to \( \rightarrow \)

\[
\begin{array}{c}
-75 \\
-31 \\
-26 \\
-4 \\
1 \\
6 \\
25 \\
26 \\
28 \\
39 \\
72 \\
141 \\
290 \\
300 \\
\end{array}
\]

\[
\text{low} = 0
\]

\[
\text{mid} = \frac{\text{low} + \text{high}}{2}
\]

\[
\text{high}
\]
search for 17 here

\[
\begin{align*}
\text{low} &= 0 \\
\text{mid} &= (\text{low} + \text{high}) / 2 \\
\text{high} &= -75 - 31 - 26 - 4 - 1 - 6 - 25 - 26 - 28 - 39 - 72 - 141 - 290 - 300
\end{align*}
\]
compare 17 to

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-75</td>
<td>-4</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-31</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

low = 0
mid = (low + high) / 2
high
search for 17 here

\[
\begin{array}{c}
-75 \\
-31 \\
-26 \\
-4 \\
1 \\
6 \\
25 \\
26 \\
28 \\
39 \\
72 \\
141 \\
290 \\
300 \\
\end{array}
\]

low = high
compare 17 to 6

low = high

so return index -1

(value 17 not found)
binarySearch( list, value)
{
    low = 0
    high = list.size - 1
    while low <= high {

        ....

    }

    return -1 // value not in list
}
binarySearch(list, value ){
    low = 0
    high = list.size - 1
    while  low <= high  {
        mid = (low + high)/ 2  //  if high == low + 1, then mid == low
        if list[mid] == value
            return mid
        else{

            //      modify low or high

        }
    }
    return  -1     // value not in list
}
binarySearch(list, value ){
    low = 0
    high = list.size - 1
    while low <= high {
        mid = (low + high)/ 2       // if high == low + 1, then mid == low
        if list[mid] == value
            return mid
        else{
            if value < list[mid]
                high = mid - 1    // high can become less than low.
            else
                low = mid + 1
            }
        }
    }
    return -1   // value not found
binarySearch(list, value ){

how to make this recursive  ?

}

binarySearch( list, value, low, high ){ // pass as parameters

    if low <= high { // if instead of while
        mid = (low + high) / 2
        if value == list[mid]
            return mid
        else if value < list[mid]
            return binarySearch(list, value, low, mid - 1)
                // mid-1 can be less than low
        else
            return binarySearch(list, value, mid+1, high)
    }
    else
        return -1
}
Observations about binary search

Q: How many times through the while loop? (iterative)
   How many recursive calls? (recursive)

A:
Observations about binary search

Q:  How many times through the while loop?  (iterative)
    How many recursive calls?  (recursive)

A:  Time to search is worst case $O(\log_2 n)$ where $n$ is size of
    the list.  Why?  Because each time we are approximately
    halving the size of the list.
Three “$O(\log_2 n)$” problems

- Converting a number to binary
- $\text{Power}(x, n)$ -- how many multiplies?
- Binary search in a sorted array

The binary property is related to the base 2 of the log.