COMP 250

Lecture 11

recursive algorithms 1

Oct. 2, 2017
Example 1: Factorial (iterative)

\[n! = 1 \times 2 \times 3 \times \ldots \times (n - 1) \times n \]

```c
factorial( n ) { 
    // assume n >= 1
    result = 1
    for (k = 2; k <= n; k++)
        result = result * k
    return result
}
```
Factorial (recursive)

\[n! = (n - 1)! \times n \]

```java
factorial( n ){
    // assume n >= 1
    if n == 1
        return 1
    else
        return factorial( n - 1 ) * n
}
```
Claim: the recursive factorial(n) algorithm returns $n!$.

Proof (by mathematical induction):

Base case: factorial(1) returns 1.

Induction step:

Take any $k \geq 1$.

if factorial(k) returns $k!$

then factorial($k + 1$) returns $(k + 1)!$
Example 2: Fibonacci

0, 1, 2, 3, 5, 8, 13, 21, 34, 55,

\begin{align*}
F(0) &= 0 \\
F(1) &= 1 \\
F(n + 2) &= F(n + 1) + F(n), \text{ for } n \geq 0.
\end{align*}
Fibonacci (iterative)

```plaintext
fibonacci(n){
    if ((n == 0) | (n == 1))
        return n
    else{
        fib0 = 0
        fib1 = 1
        for k = 2 to n{
            fib2 = fib1 + fib0  // Fib(n+2)
            fib0 = fib1        // Fib(n) in next pass
            fib1 = fib2        // Fib(n+1) in next pass
        }
        return fib2
    }
}
```
Fibonacci (recursive)

```c
fibonacci(n){    // assume n > 0
    if ((n == 0) || (n == 1))
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
}
```

This is much simpler to express than the iterative version.
Claim: the recursive Fibonacci algorithm is correct.

Proof:

Base case: Fib(0) returns 0. Fib(1) returns 1.

Induction step:

for k > 1
 if fibonacci(k-1) and fibonacci(k) return F(k-1) and F(k)
 then fibonacci(k+1) returns F(k+1).
However, the recursive Fibonacci algorithm is very inefficient. It computes the same quantity many times, for example:

```
fibonacci( 247 )
```

```
fibonacci( 246 )  fibonacci( 245 )
```

```
fibonacci( 245 )  fibonacci( 244 )  fibonacci( 244 )  fibonacci( 243)
```

```
fibonacci( 244 )  fibonacci( 243)  fibonacci( 243)  fibonacci( 242)  etc
```
Example 3: Reversing a list

input (a b c d e f g h)

output (h g f e d c b a)
Example 3: Reversing a list

input (a b c d e f g h)
output (h g f e d c b a)

Idea of recursion:

a (b c d e f g h)
(h g f e d c b) a
Example 3: Reversing a list (recursive)

reverse(list){ // assume n > 0
 if list.size == 1 // base case
 return list
 else{
 firstElement = removeFirst(list)
 list = reverse(list) // list has only n-1 elements
 return addLast(list, firstElement)
 }
}
Example 4: Sorting a list (recursive)

```java
sort(list) {  // assume size > 0
    if list.size == 1  // base case
        return list
    else{
        minElement = removeMin(list)
        list = sort(list)  // has n-1 elements
        return addFirst(list, minElement)
    }
}
```

// reminiscent of selection sort
Example 5: Tower of Hanoi

Problem: Move \(n \) disks from start tower to finish tower such that:

- move one disk at a time
- you can have a smaller disk on top of bigger disk (but you can’t have a bigger disk onto a smaller disk)
Example: \(n = 1 \)
Example: \(n = 1 \)

Example: \(n = 2 \)
Example: \(n = 2 \)

move from A to C

move from A to B

move from C to B
Q: How to move 5 disks from tower 1 to 2?

A: Think recursively.
Example: \[n = 5 \]

Somehow move 4 disks from A to C

move 1 disk from A to B

Somehow move 4 disks from C to B

19
tower(n, start, finish, other) { // e.g. tower(5, A, B, C)

 if n > 0 {

 tower(n - 1, start, other, finish)

 move from start to finish

 tower(n - 1, other, finish, start)

 }
}

Example: \(n = 5 \)
\[\text{tower}(5, A, B, C) \]

\[\text{tower}(4, A, C, B) \]

\[\text{tower}(1, A, B, C) \]

\[\text{tower}(4, C, B, A) \]
Claim: the tower() algorithm is correct, namely it moves the blocks from start to finish without breaking the two rules (one at a time, and can’t put bigger one onto smaller one).

Proof: (sketch)

Base case: tower(0, *, *, *, *) is correct.

Induction step:

for any $k > 0$, if tower(k, *, *, *, *) is correct then tower($k + 1$, *, *, *, *) is correct.
How many **moves** does tower(1, ...) make?

Answer: 1
How many **moves** does `tower(2, ...)` make?

Answer: $1 + 2$
How many moves does tower(3, ...) make?

Answer: \(1 + 2 + 4 = 2^0 + 2^1 + 2^2 \)
How many **moves** does tower(n, ...) make?

Answer: \[1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1 \]
Recall (lecture 7): “call stack”

```c
void mA() {
    mB();
    mC();
}

void main() {
    mA();
    mA();
    mA();
    mA();
    mA();
    main;
}
```
Recursive methods & Call stack

```java
factorial( n ){
    if n == 1
        return 1
    else
        return factorial( n - 1 ) * n
}
```

main main main main main main
Call stack for TestFactorial

```java
static int factorial(int n) {
    if (n <= 1)
        return 1;
    else
        return n * factorial(n-1);
}
```
Stack frame (details in COMP 273)

The call stack consists of “frames” that contain:

• the parameters passed to the method

• local variables of a method

• information about where to return (“which line number in which method in which class?”)
Call stack for TestTowerOfHanoi

parameters in current stack frame

```java
public class TestTowerOfHanoi {
    static void tower(int n, String start, String finish, String other) {
        if (n > 0) {
            tower(n - 1, other, start, finish);
            System.out.println("move from " + start + " to " + finish);
            tower(n - 1, other, finish, start);
        }
    }
}
```
A method can make both recursive and non-recursive calls.

There is a single call stack for all methods.