
1

COMP 250

Lecture 11

doubly linked lists

Jan. 31, 2022

Lists

• array list

• singly linked list

• doubly linked list
:

2

Doubly linked list

3

Each node in the list has
a reference to the next
node and to the previous
node, and to an element
object.

next element

prev

class DNode< E > {

DNode< E > next;
Dnode< E > prev;
E element;

// constructor

DNode(E e) {
element = e;
prev = null;
next = null;

}

}
4

next element

prev

Doubly linked list

5

As with a singly linked
list, the doubly list list
uses a head and tail
reference.

head

tail

next prev element

null

null

6

removeLast(){

size = size – 1

}

For a doubly linked list, removing the last element is fast.

head

tail

next prev element

null

null

BEFORE

7

removeLast(){

tail = tail.prev
tail.next = null
size = size – 1

}

head

tail

BEFORE
next prev element

null

null

tail

Unlike for a singly linked list, removing the last element of a
doubly linked list is fast.

8

removeLast(){
e = tail.element
tail = tail.prev
tail.next = null
size = size – 1
return e

}

BEFORE
next prev element

head

tail

null

null

tail

e

Unlike for a singly linked list, removing the last element of a
doubly linked list is fast.

9

Suppose we want to access node i in a doubly linked list.

One issue is that edge cases (i = 0, i = size – 1) require special
treatment: node 0 has a null prev field and node size-1 has a
null next field.

We would like to avoid testing special cases for each method,
since this is error prone.

For example, in the removeLast() method on the last slide, what
if there was only one node? That code would not work. We
forgot to adjust head!

[ADDED Feb. 10] Moreover, the instruction tail.next = null
would cause a null pointer exception.]

Avoid edge cases with “dummy nodes”

10

dummyHead

dummyTail null

null

null

null

i = 0

i = 1

i = 2

i = 3

These
indices
are not
part of the
list.

11

class DLinkedList<E>{ // Java code

DNode<E> dummyHead;
DNode<E> dummyTail;
int size;

:

// constructor

DLinkedList<E>(){
dummyHead = new DNode<E>();
dummyTail = new DNode<E>();
dummyHead.next = dummyTail;
dummyTail.prev = dummyHead;
size = 0;

}

private class DNode<E>{ … }
}

dummyHead

dummyTail null

null

null

null

12

DLinkedList< Shape >
object

dummyHead

size
4

dummyTail

Q: How many objects in total in this figure?

A: 1 + 6 + 4 = 11

Other List Operations

:
get(i)
set(i,e)
add(i,e)
remove(i)

:

13

head

tail

null

null

Many list operations require access to node i.

(This is so for singly linked lists also.)

get(i) { // returns the element at index i of list

return getNode(i).element

// getNode() to be discussed
// in next slide

}

14

dummyHead

dummyTail null

null

null

i = 0

i = 1

i = 2

i = 3

get(i) { // returns the element at index i of list

return getNode(i).element

}

getNode() is a helper method
discussed on next slide

In Java, it would normally
be a private method.

15

dummyHead

dummyTail null

null

null

i = 0

i = 1

i = 2

i = 3

getNode(i) { // helper, returns a DNode

// Omitting verification that 0 <= i < size

node = dummyHead.next
for (k = 0; k < i ; k ++)

node = node.next
return node

}

16

dummyHead

dummyTail null

null

null

i = 0

i = 1

i = 2

i = 3

getNode(i) { // returns a DNode

// Omitting verification that 0 <= i < size

node = dummyHead.next
for (k = 0; k < i ; k ++)

node = node.next
return node

}

17

dummyHead

dummyTail null

null

null

i = 0

i = 1

i = 2

i = 3

node

18

Ideas for how to speed this up?

getNode(i) { // returns a DNode

if (i < size/2){ // iterate from head
node = dummyHead.next
for (k = 0; k < i; k ++)

node = node.next // exits loop when k==i
}

else{ // iterate from tail
node = dummyTail.prev
for (k = size-1; k > i; k --) // exits loop when k==i

node = node.prev
}
return node

}

Faster version of getNode()…

19

remove(i) {
node = getNode(i)

}

20

i – 1

i

i + 1

BEFORE AFTER

?node

next prev element

remove(i) {
node = getNode(i)

}

21

i – 1

i

i + 1

BEFORE AFTER

node

next prev element next prev element

See exercises

Java LinkedList class
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

It uses a doubly linked list as the underlying data structure.

It has some methods that ArrayList doesn’t have e.g.

• addFirst()
• removeFirst()

• addLast()
• removeLast()

Why ?
22

Computational Complexity (N = list size)

23

array list SLinkedList DLinkedList

addFirst O(N) O(1) O(1)

removeFirst O(N) O(1) O(1)

addLast O(1) O(1) O(1)

removeLast O(1) O(N) O(1)

get(i) O(1) ? ?

Only if there is available space.
Worst case is O(N).

Best cases are O(1).
Worst cases are O(N).

24

Q: What is the time complexity of the following?

// Assume E is some actual type
// N is some constant

LinkedList< E > list = new LinkedList< E >();

for (k = 0; k < N; k ++)
list.addFirst(new E(….));

A:

where ‘ means constant time, i.e. do instructions 1 time

25

Q: What is the time complexity of the following ?

// Let size == N

for (k = 0; k < list.size(); k++)
list.get(k);

A:

Java ‘enhanced for loop’
A more efficient way to iterate through elements in a Java
LinkedList is to use:

for (E e : list) { … }

‘list’ references a LinkedList< E > object.

e is a local variable to the loop. It is of type E, namely the type of
element in the linked list.
You can use e and list within the loop, but don’t modify list.

26

Java ‘enhanced for loop’

for (E e : list) {
// do something

}

When E is a LinkedList, this is implemented roughly as

node = head // or write it using the dummyhead idea
while (node != null){

e = node.element
// do something with e
node = node.next

}
27

What about “Space Complexity” ?

28

null

null

We say all three data structures use space O(N) for a list of size N.
But linked lists use more than 2x (single) or 3x (double) as much
space as arraylists.

How to “clone” a list i.e. make a copy?

29

head

size
4

tail

list1 list2

?

LinkedList<Shape> list2 = list1.clone();

For technical reasons that I will
discuss in a future lecture, you
need to include a cast here:

(LinkedList)

“Shallow copy”

30

head

size 4

tail

head

size 4

tail

The list object and the list nodes are copied.
But the Shape objects are not copied.

list1 list2

31

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

LinkedList<T>.clone() makes a shallow copy.

32

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Next week you will understand why this says Object rather than LinkedList.
This is the reason that we need to cast, as I mentioned two slides ago.

“Deep copy”

33

The linkedlist object, the list nodes, and the list elements are all copied.
The Java LinkedList class does not have a built-in method to make a
deep copy.

head

size
4

tail

head

size
4

tail

list1 list2

Real Example – Shallow Copy

34

Suppose have a list of midterm exams for a course. The exams need to be
graded by hand.

Each grader (TA) is responsible for grading certain questions. So each
grader will have a list of exams, and will write on each of exams.

Each grader needs a shallow copy of the list of exams.

For this example, we don’t care if it is a linked list or array list.

Real Example – Deep Copy

35

Suppose have a list of job applications, which will examined by different
people in a company. Suppose the employer wants independent assessment
of applications by different people.

Each person assessing the applications will mark up the PDF of each
application.

Each assessor needs a deep copy of the list of applications. They should
not be allowed to see each other’s assessments.

Coming up…

Lectures

Wed. Feb. 2
Quadratic Sorting i.e. ଶ

• bubble sort
• selection sort
• insertion sort

Fri. Feb. 4
Object Oriented Design 1
(Inheritance)

Assessments

Assignment 1

- due on Friday, Feb. 11

36

