COMP 250

Introduction to Computer Science

Fall 2017

Instructor: Prof. Michael Langer
My “personal” web page:
http://www.cim.mcgill.ca/~langer/

Michael Langer

I am an Associate Professor in the School of Computer Science at McGill University in Montreal, Canada. I’m also a member of CIM (Center for Intelligent Machines).

I grew up in Toronto. I received a B.Sc. (Math) from McGill in 1986, M.Sc. in Computer Science from the University of Toronto in 1988, and Ph.D. from McGill in 1994. I was a post-doc at the NEC Research Institute in Princeton NJ, and at the Max-Planck-Institute for Biological Cybernetics in Tuebingen Germany where I was a Humboldt Research Fellow. I returned to McGill as a faculty member in 2000. Here is my Curriculum Vita.

Research

Publications
PDF links
Google Scholar
DBLP
ResearchGate
Talks and Posters

Teaching

COMP 250 Introduction to Computer Science
COMP 251 Algorithms and Data Structures
COMP 273 Introduction to Computer Systems
COMP 423 Data Compression
COMP 546 Computational Perception
COMP 557 Fundamentals of Computer Graphics
COMP 558 Fundamentals of Computer Vision

Contact

office: McConnell Eng. 329
postal: McConnell Eng. #318
3480 University
Montreal H3A0E9
QC, Canada

phone: 514-398-3740
fax: 514-398-3883
email: langer[@]cim.mcgill.ca

Links

Grad studies in CS
PhD comics
My public COMP 250 web page

Office hours:
MWR 13:00-14:00
ENGMC 329
MWF 10:35-11:25
MCMED 522 (recorded)
MRF 14:35-15:25
MD-HAR 240 G-10

Resources (New)

- **Course Outline (Fall 2017)**

Resources (Old)

- free Java book: "How to think like a computer scientist"
- Eclipse [Download](#)

LECTURES

Preliminaries

0. introductions [slides]
1. grade school algorithms for arithmetic [notes] [slides]
2. binary numbers [notes] [slides]
3. Eclipse IDE and debugging (in class tutorial)

Linear Data Structures

4. array list [notes] [slides]
5. singly linked lists [notes] [slides]
6. doubly linked lists [notes] [slides]
7. list sorting algorithms [notes] [slides]
 bubble, selection, & insertion sort
8. stacks [notes] [slides]
9. queues [notes] [slides]

EXERCISES, ASSIGNMENTS

Exercises 1: number representations [PDF]

Exercises 2: arrays [PDF]
Exercises 3: linked lists [PDF] [code] E3 Q2 figures
Exercises 4: O(n^2) sorting [PDF]
Exercises 5: stacks and queues [PDF]
Welcome!

There are 650 of you enrolled in the two sections.

Sec. 001: 450 chairs in McMED 522 (MWF 10:35-11:25)

Sec. 002: 190 chairs in MDHAR 310 (MRF 14:35-15:25)

I will treat the two sections as one course.
(More on this issue later...)
Who are you (degree) ?

B. Arts 110
B. Arts & Sci 15
B. Com 25
B. Sci 260
B. Soft. Eng. 35
B. Eng 175

650
Who are you (year) ?

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>25</td>
</tr>
<tr>
<td>U1 new</td>
<td>80</td>
</tr>
<tr>
<td>U1 returning</td>
<td>170</td>
</tr>
<tr>
<td>U2</td>
<td>230</td>
</tr>
<tr>
<td>U3</td>
<td>130</td>
</tr>
<tr>
<td>other</td>
<td>5</td>
</tr>
</tbody>
</table>

640
Who are you (year) ?

U0	25
U1 new	80
U1 returning	170
U2	230 $ \rightarrow \text{switch}
U3	130 $ \rightarrow $
other	5
	640
COMP 250: overview

• Preliminaries
 (grade school algorithms, binary numbers, Eclipse)

• Data Structures 1
 (lists: array lists, linked lists, stacks and queues)
COMP 250: overview

• Preliminaries
 (grade school algorithms, binary numbers, Eclipse)

• Data Structures 1
 (lists: array lists, linked lists, stacks and queues)

• Induction and Recursion
 (recursive algorithms for lists e.g. searching and sorting)

• Mathematical Tools for Analysis of Algorithms
 (recurrences, asymptotic complexity and ‘big O’)
COMP 250: overview

- Preliminaries
 (grade school algorithms, binary numbers, Eclipse)
- Data Structures 1
 (lists: array lists, linked lists, stacks and queues)
- Induction and Recursion
 (recursive algorithms for lists e.g. searching and sorting)
- Mathematical Tools for Analysis of Algorithms
 (recurrences, asymptotic complexity and ‘big O’)
- Data Structures 2
 (trees, binary search trees, heaps, graphs, hash tables)
- Object Oriented Design in Java
 (inheritance, polymorphism)
COMP 250 Introduction to Computer Science (3 credits)

Offered by: Computer Science (Faculty of Science)

Overview

Computer Science (Sci): Mathematical tools (binary numbers, induction, recurrence relations, asymptotic complexity, establishing correctness of programs), Data structures (arrays, stacks, queues, linked lists, trees, binary trees, binary search trees, heaps, hash tables), Recursive and non-recursive algorithms (searching and sorting, tree and graph traversal). Abstract data types, inheritance. Selected topics.

Terms: Fall 2017, Winter 2018

Instructors: Michael Langer (Fall) Jérôme Waldispuhl (Winter)

- 3 hours

Prerequisites: Familiarity with a high level programming language and CEGEP level Math.

Students with limited programming experience should take COMP 202 or equivalent before COMP 250. See COMP 202 Course Description for a list of topics.

COMP 250 uses the Java programming language.
What is your programming background?

256 attempts have been completed

Question 1

Which of the following applies to you? (If more than one applies, then indicate the first.)

- I have taken and passed COMP 202. | 170 (66.41%)
- I have taken a different Java course (high school or CEGEP) or learned Java on my own, and I have spent over 40 hours coding in Java. | 46 (17.97%)
- I have taken a course in C programming (e.g. COMP 208) and I have spent over 40 hours coding in C. | 17 (6.64%)
- I have learned one of Python/Javascript/Matlab/R and I have spent over 40 hours coding in it. | 19 (7.42%)
- None of the above. (In this case, you should take COMP 202 instead of COMP 250, or you should email me or see me in person and explain your special circumstances.) | 4 (1.56%)
So, 85% of you know how to code in Java
(COMP 202 or equivalent -- ECSE 202 is fine too)

COMP 202 Foundations of Programming

Offered by: Computer Science (Faculty of Science)

Overview
Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.

- Prerequisite: a CEGEP level mathematics course
- Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
You have a lot work to do in next two weeks: you need to learn about objects and classes in Java.

(C++ is object oriented, so you are in better shape.)
7% of you know how to code in Python, Javascript, R, Matlab, ... but not Java or C

You need to spend 40 (?) hours in the next 2 weeks learning Java:

• types (primitive vs. reference)
• objects and classes

Otherwise, (1) take COMP 202 instead or (2) spend some time in Fall learning Java on your own. Then take COMP 250 in Winter.
How to learn Java in 2 weeks?

Resources suggested on the Course Outline:

• See COMP 202 content (topics, slides)

• online tutorials

• free book: “How to think like a computer scientist”

• books from library

Don’t just read. Code! Do exercises.
Math Prerequisites

CEGEP level math (Cal 1)

\[1 + 2 + 3 + 4 + \ldots \quad n = \frac{n(n+1)}{2} \]

\[1 + x + x^2 + x^3 + \ldots \quad x^n = \frac{1 - x^{n+1}}{1 - x} \]

\[\log ab = \log a + \log b \]
Unofficial “coreq” MATH courses

CS Major/Minor MATH 240 Discrete Structures 1
B. Eng & B. SoftEng

Joint Math/CS programs: MATH 235 Algebra I

One of these courses is the official co-requisite for COMP 251 Algorithms and Data Structures. I advise you to it before COMP 251.
The Big Picture: COMP@McGill

- **202 Intro Java Programming**

- **206 Software Sys**
 - **273 Comp. Sys.**
 - **310 Oper. Sys.**

- **250 Intro CompSci**
 - **302 Program Lang**
 - **421 Databases**
 - **424 Artif. Intel.**

- **251 Data Str & Alg**
 - **303 Software Design**
 - **420 Disc. Str. 1**

- **350 Num. Meth**
 - **240 Disc. Str. 1**
 - **223 Linear Alg.**
 - **222 Cal III**
 - **323 Prob.**

Systems
- (compilers, networks, distributed sys, concurrency, web,..)

Applications
- (graphics, vision, bioinf, games, machine learning,..)

Theory
- (crypto, optimization, game theory, logic, correctness, computability,..)

Math
- (prereqs for many upper level COMP courses)
COMP 250 + COMP 206 + COMP 273 ?

Only if you have a lot of programming experience already.

If you take just two, do 250 and 206.
COMP 250 Resources

public web page
http://www.cim.mcgill.ca/~langer/250.html

- Course Outline
- lecture notes
- slides
- exercises
-

MyCourses/250

- announcements
 (you need to subscribe)
- lecture recordings
- discussion boards
- submit assignments
- quizzes
- grade book
Office hours

• MWR 1-2 pm (Mon, Wed, Thurs)

• by appointment (send me email)

• quick questions by email
 (if question is of general interest then I will ask you to post on mycourses discussion board)
CSUS Helpdesk

HOURS: 12pm - 5pm (Mon-Fri)
LOCATION: Trottier 3090

WHO ARE WE? WHAT DO WE DO?
- U2 and U3 students who have taken this course and want to help you!
- We are a FREE drop-in tutoring service, perfect for study help, and guidance on assignments.
- We provide review sessions for midterms and finals for intro courses!
Evaluation (your grade)

• 4 x 10% Assignments
 Java programming

• 10% Six Quizzes *(on mycourses, not during class)*
 Details/dates to be announced (first time I do this...)

• 50% Final Exam (multiple choice)
Assignments:
collaboration vs. cheating

✓ clarification Q’s on mycourses Discussion Board
✓ hands on helping your peers to debug code

x posting key ideas on mycourses (or facebook)
x sharing code
Quizzes

On mycourses, multiple choice, graded automatically.

Do them *on your own*.

They are worth only 10% of your grade.

They are mainly there as:
• an incentive for you to keep up with the course
• a way for you to gauge how you are doing
• a way to practice for the final exam
How much work can you expect?

Faculty of Science suggests a 3 credit should require 9 hours work per week:

13 weeks * 9 hours/credit/week

= 117 hours total

So, 5 courses implies ~45 hours per week.

4 courses implies ~36 hours per week.
How much work can you expect?

- Lectures (~40 hours)
- Quiz/Exam study, Exercises (~40 hours)
- Assignments (~40 hours = 4 x 10)

That is my guesstimate for a B grade for a B student.
Two Sections or One?

Sec. 001: 450 seats in McMED 522 (MWF 10:35-11:25)
Sec. 002: 190 seats in MDHAR 310 (MWF 14:35-15:25)

Lectures will be recorded.

I will treat the two sections as one course.

If the *majority* of you choose not to attend the lectures, then I *will* use one section (probably Sec 002 MRF 14:35-15:25) for tutorials rather than give an identical lecture.
COMP 206 and the 15 minute uphill walk for Sec. 001

COMP 206:

Sec. 001: ADAMS AUD (MWF 9:35-10:25) → ...
Sec. 002: MAAS 10 (MWF 10:35-11:25)

COMP 250:

... → Sec. 001: McMED 522 (MWF 10:35-11:25)
Sec. 002: MDHAR 310 (MRF 14:35-15:25)
Your TODO list

• Review/learn Java (COMP 202)
 Assignment 1 will be posted in ~2 weeks.

• Learn how to use IDE for Java e.g. Eclipse
 (or NetBeans or IntelliJ or some other, but not DrJava)
 In class tutorial for Eclipse next week (probably Wed/Thurs)
 INSTALL and run Eclipse beforehand https://www.eclipse.org/home/

• Subscribe to mycourses: Announcements, Discussions.
Subscribe to Announcements and Discussion Board

Discussions

Filter by: Unread

Default Forum ▼ DROP DOWN