Bridging the Gaps between Cameras

By D. Makris, T. Ellis, J. Black

Athena K. Moghaddam
Goal

• The relationships between the cameras must be determined to enable integration of information from multiple views.
 – Automatically derive the topology of the Camera network
 – Tracking the targets across the “blind” area
Outline

• Problem Statement
• Previous work
• Approach
 – Learning Entry/Exit zones
 – Learning Routes
 – Find the Visible and Invisible Links
• Conclusion
Problem Statement

1- track multiple targets in one camera view field

2- combine track of a single item in multiple view fields

3- correspond the track of the object between the view field of two cameras
Previous Work

• Learning Entry/Exit zones

• Finding Path

• Extracting the network of cameras
 – Automatic Learning of an Activity-Based Semantic Scene Model
Others

• Calibrating Cameras
 – Installation Time
 – What if the network is large

• Using Colors (Javed et al, IEEE computer vision 2003)
 – Colors are not reliable
Semantic Learning

- Reverse Engineering
Learning Entry/Exit Zones

• Clustering Entry/Exit points
 – K-Means
 – EM (Expectation Maximization)

• How many clusters do we have?
 – Run the algorithm with a large number of clusters
 – Keep the clusters with density higher than threshold
Finding a Route

- Find a match for the new trajectory
 Or
- Add a new route
 - Update the database
Route Classification
Creating Network

• Each entry/exit zone is a node
• Each rout is an edge
• Find the probabilistic links between cameras
 – Using scene semantics: entry/exit zones, stop zones, etc.
Ground Plane Map
Modeling the Gap

- Target disappear from the node i with rate $n_i(t)$
- Appear at the node j with $m_j(t)$
- $\alpha_{ij}(\tau) \propto C_{ij}(\tau)$
- $C_{ij}(\tau) \propto E\{n_i(t) \cdot m_j(t + \tau)\}$
Conclusions

• Automatically constructed tempo-topographical model of multi-camera network
• Completely unsupervised
• No Calibration
• Benefits for surveillance systems:
 – Plug and Play installation
 – Probabilistic track across blind region
I Have A Question