Intelligent Agents and Architectures
Recap

• History and Philosophical Underpinnings
• Looked at the contributions of Descartes, Turing, McCarthy, Newell & Simon, Winograd, Minsky, Lenat, Searle, Brooks
Agenda

• Intelligent Agents
 • agent architectures
 • SMPA
 • subsumption
What is an agent?
Vacuum-cleaner world

- **percepts**: location and contents e.g., [A,Dirty]
- **actions**: *Left, Right, Suck, NoOp*
The Lowly **Dung Beetle**

After digging its nest and laying its eggs, the dung beetle fetches a ball of dung from a nearby en route heap to plug the entrance; if the ball of dung is removed from its grasp, the beetle continues on and pantomimes plugging the nest with the nonexistent dung ball.

from Hanski & Cambefort, 1991
The **Sphex Wasp**

The female will dig a burrow, go out and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well, drag the caterpillar inside, and lay its eggs... but if an entomologist moves the caterpillar a few inches away while the sphex is doing the check, it will revert back to the “drag” step of its plan, and will continue the plan without modification, even after dozens of caterpillar-moving interventions.
Rational Agents

• rational agent relies on its own percepts (sensors) and experience (learning), not just prior “hardwired” knowledge of its designer ➔ “autonomous”
Automatic vs. Autonomous

Automatic means that a system will do exactly as programmed, it has no choice.

Autonomous means that a system has a choice to make free of outside influence, i.e., an autonomous system has free will.

Brian T Clough, "Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway"
Agent functions and programs

- an agent is completely specified by the agent function mapping percept sequences to actions
- we are interested in an efficient implementation of a rational agent function
Table-lookup agent

- could construct a look-up table with appropriate action to take for any percept sequence
Simple reflex agents
Model-based reflex agents
Goal-based agents
Utility-based agents
Learning agents
Deliberative Architectures

• SMPA: sense, model, plan, act
• use internal, symbolic representation (model) of world for reasoning/planning

sensors → perception → modeling → planning → task execution → motor control → actuators
Exercise: Duck family walk

- Design a set of robots to follow the mommy duck in single file using an SMPA architecture

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Effectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonar ring (report distance at all angles around robot)</td>
<td>steerable base</td>
</tr>
</tbody>
</table>
Shakey (1966-1972)

- PLANEX: accepts goals, maintains world state, calls planner, executes best plan
- STRIPS: propositional logic planning system
- ILA: intermediate-level actions
- LLA: low-level actions
Strengths of Deliberation

- allows agent to look-ahead at possible outcomes of action (search) without actually performing action
- powerful learning (adaptation, compilation) schemes can be incorporated
Weaknesses

- cost of generating model, inaccuracies
- cost of reasoning about low-level actions
- too expensive for real-time behaviour
- the “microworlds” problem
 - AI programs operated in small domains
 - relied on very simple world models
 - couldn't scale to real world scenarios
Which robot is more capable?

Where should I kick ball? How hard? Where is my teammate? Where am I?

Kick ball

Where should I kick ball? How hard? Where is my teammate? Where am I?

GOFAI
Brooks’ criticism

- intelligence does not require:
 - explicit representation
 - abstract, symbolic reasoning

“the world is its own best model”
Brooks’ key ideas

- **Situatedness**: agents must behave successfully in their environment, directly interacting with the world as opposed to modeling it.
- **Embodiment**: real interaction with the physical world is critical to resolve the symbol grounding problem.
- **Intelligence**: development of perception and mobility drove evolutionary progress; intelligence did not emerge top-down.
- **Emergence**: interaction of individual modules, within a complex environment, gives appearance of intelligence.
Reactive Architectures

- behaviour-based robotics
- act using stimulus/response behaviour
- no centralized control
- example: subsubmption architecture
 - layered task decomposition
 - tight connection of perception to action
Subsumption Architecture

sensors → reason about objects → actuators
plan changes to world
identify objects
monitor changes
build maps
explore
wander
avoid objects
Strengths

• competence can be achieved without explicit reasoning or rule following [Dreyfus, 1972]
• internal models are expensive and inaccurate so best to avoid them
• complex behaviour emerges through interaction of simple behaviours
Question

• How many layers can be built?
• How complex can a behavior be?
• Can higher level functions such as learning be achieved by this approach?
Exercise: Duck family walk

- Design a set of robots to follow the mommy duck in single file using a subsumption architecture

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Effectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonar ring (report distance at all angles around robot)</td>
<td>steerable base</td>
</tr>
</tbody>
</table>
How far can it go?
Homework

• Design the control logic for a robot that has to drive around the Trottier building and collect empty soda cans

• Robot has:

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Effectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser rangefinder</td>
<td>three-wheel base</td>
</tr>
<tr>
<td>Compass</td>
<td>2-joint arm</td>
</tr>
<tr>
<td>IR beam-break (between fingers)</td>
<td>gripper</td>
</tr>
<tr>
<td>IR proximity sensors (around base)</td>
<td></td>
</tr>
<tr>
<td>Contact sensor (on hand)</td>
<td></td>
</tr>
</tbody>
</table>
Next class

- Logical agents