STATISTICAL LEARNING



Outline

> Bayesian learning
& Maximum a posteriori and maximum likelihood learning

> Bayes net learning
— ML parameter learning with complete data
— linear regression



Example

Suppose there are five kinds of bags of candies:
10% are /;: 100% cherry candies
20% are ho: 75% cherry candies + 25% lime candies
40% are 32 50% cherry candies + 50% lime candies
20% are /14: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies

S
Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?



Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values /1, /o, . .., prior P(H)

Jth observation d; gives the outcome of random variable D
training data d =d;, ..., dy

Given the data so far, each hypothesis has a posterior probability:
P(hi|d) = aP(d|h;)P(h;)

where P(d|h;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) = X P(X|d, h) P(hild) = %; P(X|h)P(hi|d)

where we assume that each hypothesis determines a probability distribution
over X



No need to pick one best-guess hypothesis!



Posterior probability of hypotheses

Posterior probability of hypothesis
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Prediction probability

o
©

o
o

o
o))

P(next candy is lime | d)
o
~

o
ol

o
~

4 6
Number of samples in d

o
N

10




MAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose /i\iap maximizing P(/;|d)
i.e., maximize P(d|h;)P(h;) or log P(d|h;) + log P(h;)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P(d|/,) is 1 if consistent, 0 otherwise
= MAP = simplest consistent hypothesis
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ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose /i, maximizing P(d|h;)

i.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method
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