STATISTICAL LEARNING

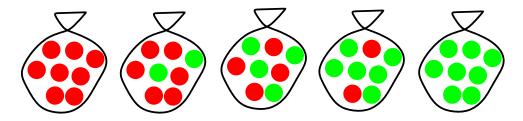
Outline

- \diamond Bayesian learning
- ♦ Maximum *a posteriori* and maximum likelihood learning
- $\diamondsuit\,$ Bayes net learning
 - ML parameter learning with complete data
 - linear regression

Example

Suppose there are five kinds of bags of candies:

10% are h_1 : 100% cherry candies 20% are h_2 : 75% cherry candies + 25% lime candies 40% are h_3 : 50% cherry candies + 50% lime candies 20% are h_4 : 25% cherry candies + 75% lime candies 10% are h_5 : 100% lime candies



Then we observe candies drawn from some bag: ••••••••••••

What kind of bag is it? What flavour will the next candy be?

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$

*j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i)P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

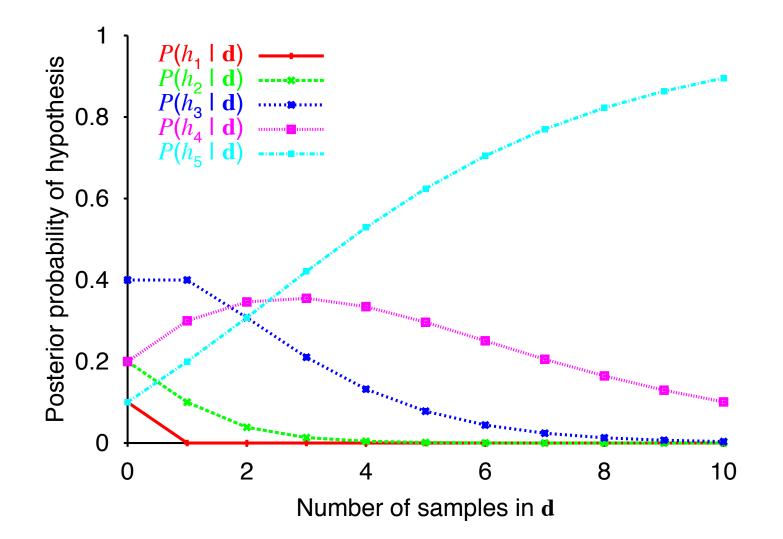
Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

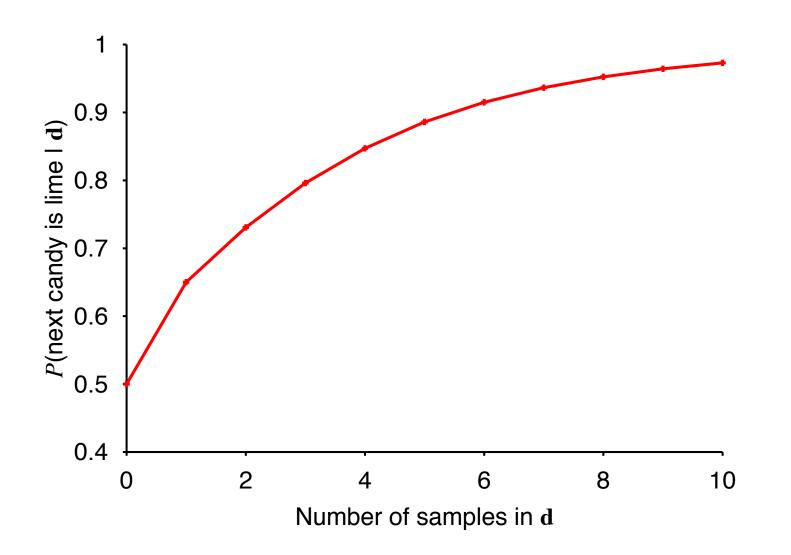
where we assume that each hypothesis determines a probability distribution over \boldsymbol{X}

No need to pick one best-guess hypothesis!

Posterior probability of hypotheses



Prediction probability



MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose h_{MAP} maximizing $P(h_i | \mathbf{d})$

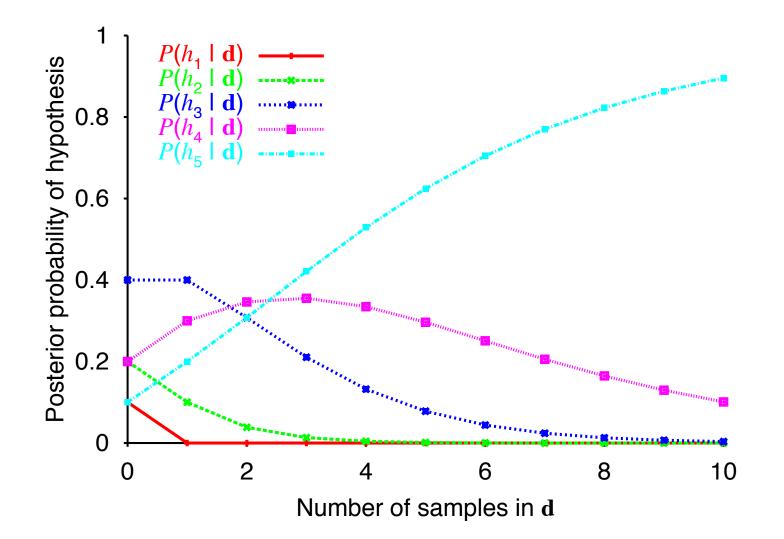
i.e., maximize $P(\mathbf{d}|h_i)P(h_i)$ or $\log P(\mathbf{d}|h_i) + \log P(h_i)$

Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, $P(\mathbf{d}|h_i)$ is 1 if consistent, 0 otherwise \Rightarrow MAP = simplest consistent hypothesis

Posterior probability of hypotheses



ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose h_{ML} maximizing $P(\mathbf{d}|h_i)$

i.e., simply get the best fit to the data; identical to MAP for uniform prior (which is reasonable if all hypotheses are of the same complexity)

ML is the "standard" (non-Bayesian) statistical learning method