
Problem Solving by Search

5 4

6 1 8

7 3 2

Readings for this class

§  Chapter 3

Learning Objectives

§  understand how to formulate a problem in AI terms
§  review basics of blind search methods
§  recognize benefits of iterative deepening
§  know how to design heuristics and apply them in

A* search

Problem Formulation

•  states: description of “world of interest”
•  initial state
•  successor function: generates set of

legal next states from available actions
•  goal test: how do we know we’re done?
•  path cost: way of choosing between

multiple solutions (e.g., shortest route)

Vacuum World Problem

•  successor function:
•  move left (L), move right

(R), suck (S)

•  goal test:
•  no dirt left in any square

•  path cost:
•  each step costs 1

State Tree for the Vacuum World

•  Goal: no dirt left
in any square

•  Operators: move
left, move right,
suck

Missionaries & Cannibals

•  3 missionaries and 3 cannibals need to
cross crocodile-infested river

•  boat can hold 1 or 2 people
•  can’t leave any missionaries

outnumbered by cannibals

Missionaries & Cannibals: Formulation

•  states: (# missionaries, # cannibals, # of
boats) on left bank of river

•  initial state: (3,3,1)
•  successor function: move (# missionaries, #

cannibals) from one bank to other
•  goal test: (0,0,0)
•  path cost: # of river crossings

8-Queens problem

•  arrange 8 queens on a
chessboard so that no two
queens are on the same
row, column or diagonal
(i.e., attack each other)

•  applications to parallel
memory storage, VLSI
testing, traffic control, and
deadlock prevention

Naïve approach

•  state: any arrangement
of [0,8] queens on the
board

•  successor function: add
a queen to any empty
square

State space: 3 x 1014

Better approach

•  state: any arrangement of
n=[0,8] queens, one per
column in the leftmost n
columns, with no queen
attacking another

•  successor function: add a
queen to any square in the
leftmost empty column
such that it is not attacked
by any other queen

State space: 2057

Search Methods

•  use to explore state space for solution
to a problem

•  can be uninformed (blind) or use some
reasonable knowledge (heuristics) to
guide search

Uninformed Search

•  breadth-first
•  expand shallowest nodes first (FIFO)

•  depth-first
•  expand deepest nodes first (LIFO)

•  depth-limited search
•  depth-first with cutoff

•  iterative-deepening
•  combines benefits of BFS and DFS

•  bidirectional
•  applicable when operators are reversible

Breadth-first search

§  Expand shallowest unexpanded node
§  Put successors at end of FIFO queue

Breadth-first search

Complete? Yes (if b is finite)
Time complexity 1+b+b2+b3+… +bd = O(bd)
Space complexity O(bd) (every node kept in memory)
Optimal? Yes (if cost = 1 per step)

b: maximum branching factor of search tree
d: depth of the least cost solution

Exponential time/memory requirements make
breadth-first search unsuitable for large problems

Depth-first search

§  Expand deepest unexpanded node
§  Put successors at end of LIFO queue

(or push on stack)

Depth-first search

Complete? No (fails in infinite-depth spaces or
spaces with loops)

Time complexity O(bm) (bad if m >> d)
Space complexity O(bm) (linear in space)
Optimal? No

b: maximum branching factor of search tree
d: depth of the least cost solution
m: maximum depth of state space

How to get best of both worlds?

§  i.e., how to combine completeness of
breadth first & space complexity of
depth-first search?

§  start with depth-limited search
§  solves the infinite depth problem

Depth-limited search

§  depth-first search with depth limit l

Complete? only if l > d
Time complexity O(bl)
Space complexity O(bl)
Optimal? only if l = d

Iterative-deepening search

§  use depth-limited search as subroutine
with increasing l

§  is this efficient?

Complete? Yes
Time complexity d+(d-1)b+(d-2)b2+… +bd = O(bd)
Space complexity O(bd)
Optimal? Yes (if cost = 1 per step)

8-squares problem
What’s a good state description and successor function?

5 4

6 1 8

7 3 2

1 2

8

3

4

7 6 5

initial state goal state

Informed Search: Greedy Search

•  minimize estimated cost to goal, h(n)
•  start by expanding minimal cost node

Informed Search: A* search

•  minimize estimated cost to goal: f(n) = g(n) + h(n)
•  g(n) = cost of solution from start to n
•  h(n) is estimated cost of cheapest solution from n to goal

•  A* uses a best-first search: chooses least-cost path
from initial state to goal state

Definitions

•  h(n) is admissible or valid if it never over-estimates true cost to
reach goal

•  h(n) is consistent or monotonic if f(n) never increases as one
follows a path from a node through its successors, toward the
goal

•  a consistent heuristic is also admissible

Optimality of A* search

•  If h(n) is admissible, A* is optimal:
•  no optimal algorithm employing the same heuristic will

expand fewer nodes than A*

ECE Linux machines

§  general purpose Linux machines
§  tr5130gu-<#>.ece.mcgill.ca

 where <#> in (1..15)
§  3 Debian machines in front of TR 5107

§  tr5130oa-0<#>
where <#> in (1..3)

§  simple AI installed here:
/opt/linux64/simpleai

Hello World Simple AI Exercise – Part 1

§  the source file can be found under
samples/search/hello_world.py

§  modify the code to test BFS and DFS
§  how do these other search techniques

perform? why?

Hello World Simple AI Exercise – Part 2

§  Change the program to use 3 actions:
§  Insertion: can insert a single character

anywhere in the string
§ Deletion: can remove any single character

from the string
§ Replace: can replace any character in the

string with another character

Hello World Simple AI Exercise – Part 3

§  Run the modified code to search for
“Hello World!”
starting from “halo, word.”

§  What is the solution given by A*?
§  Is the heuristic still admissible?

Homework

§  8-Queens simple AI exercise:
§  implement the 8-Queens problem in simple AI

(start from missioners.py)

§  read before next class:
§ Ch. 5-5.4

