
Recurrent (or Auto-Associative)
Neural Networks

Elman Network

•  includes a layer of
“context units”
connected from
hidden layer with
weight of 1

•  at each iteration,
hidden unit
outputs copied
into context units

Jordan Network

•  similar to Elman network but:
•  context units connected to output layer
•  values in context units (ci) are updated, not

replaced, by values of output units (oi), i.e.,
ci = oi + γci

Associative Memory

•  store a set of p patterns
•  when presented with a new pattern,

network responds by producing closest
stored pattern “in memory”

•  uses relaxation learning

Hopfield Networks

•  N interconnected neurons, potentially
completely recurrent

•  all neurons are both input & output; all weights
are symmetric (but wii=0)

•  activation values are binary (typically -1/+1)

•  activation rule: aj = +1 if Σiwij ai > θj

 -1 otherwise
 where θj is the threshold

Learning and Recall

•  set weights to ensure learned patterns are stable
•  pattern xp stable if, when clamped (activation fixed for

the given neurons), all neurons stable
•  recalling a pattern is achieved by activating (possibly

a subset of) neurons with the corresponding inputs
and then letting the network settle

Hebbian learning

•  wij ← correlation of activations (+1)

•  for n patterns xp

wij = Σp xi
p
 xj

p
 if i ≠ j, else 0

•  limits of learning: for a network of N neurons,
recall errors become severe above 0.15N
“memories”
•  stored patterns become unstable
•  spurious stable states appear

Why simple Hebbian Learning Fails

•  don’t know how to set weights to or from “hidden”

units (or those that aren’t part of a learned pattern)
 ∴ can’t generalize beyond simple Hopfield Networks

Boltzmann Machines
[Ackley, Hinton, & Sejnowski 1985]

•  similar to Hopfield network
•  units take on values of 0 or 1
•  weights are symmetric
•  but allows for hidden units (h)

as well as visible units (v)

•  weights adjusted through stochastic
update rule based on simulated
annealing; thus, Boltzmann machine
can be viewed as a Monte Carlo version
of Hopfield network

Energy

•  global energy of network is: E = -Σi≠j wij ai aj + Σiθi ai
•  first term suggests that the network has minimal energy

when both units i and j are correlated and connected by a
positive weight

•  thus, the difference in global energy resulting from
unit i being off (0) rather than on (1) is:
ΔΕi = Εi-off - Εi-on= 0 – (-Σj wij aj+θi) = Σj wij aj - θi

•  Boltzmann Factor: energy of a state is proportional to
the negative log probability of that state, i.e., higher
energy states have lower probability

Simulated Annealing

•  start with high T
•  network run by repeatedly choosing a unit and setting

its state according to activation function
•  gradually reduce T to 1 until energy level fluctuates

around global minimum
•  at low temperature, there is a strong bias to states

with low energy

Probabilistic Activation Function

•  Boltzmann machine units are stochastic; probabilistic
activation function:
P(ai ← 1) = 1/(1 + e-ΔEi/T)
where T is the temperature of the system

Boltzmann Learning

•  learning works by adjusting weights so that global
states with highest probabilities get lowest energies
•  divide units into visible units (V) and hidden units (H)
•  training data vectors applied to V
•  distribution of training vectors denoted P+(V)
•  converged distribution of visible units of Boltzmann
machine denoted P-(V)
•  want to minimize Kullback-Leibler distance
(asymmetric divergence error term) over all possible
states of V:
 G = Σv P+(v) ln (P+(v) / P-(v))

Contrastive Hebbian Learning: Waking Phase

•  for each training pattern, input and output
units are clamped to pattern

•  network permitted to settle (annealing)
•  frequency of correlated activation <aiaj>clamped

between all units measured for some fixed
time at thermal equilibrium

•  incremental version of Hebbian learning used:
Δwij = α<aiaj>clamped

Contrastive Hebbian Learning: Sleeping

•  network run freely (no units clamped) and
annealed

•  frequency of correlated activation <aiaj>free

between all units measured for some fixed
time at thermal equilibrium

•  reverse incremental version of Hebbian
learning used:
Δwij = -α<aiaj>free

Motivation

•  when network response is identical between clamped
and non-clamped phases, weights are stable

•  waking and sleeping learning will balance each other
•  when network response without clamping differs from

its response with clamping, the difference is error and
is compensated for by sleeping-phase learning

Restricted Boltzmann Machine (RBM)

•  learning time for Boltzmann
machine can be excessive

•  can be made efficient by not
allowing visible-visible or hidden-
hidden connections:
•  starting with a data vector on the

visible units, update all of the hidden
units in parallel.

•  update all of the visible units in
parallel to get a "reconstruction".

•  can use the trained hidden units as
input data for a new, higher-level
RBM

