Recurrent (or Auto-Associative)
Neural Networks

Elman Network

* includes a layer of
“‘context units”
connected from
hidden layer with
weight of 1

e at each iteration,
hidden unit
outputs copied
into context units

’ [)-_)

bn

Jordan Network

 similar to Elman network but:
 context units connected to output layer

» values in context units (c;) are updated, not
replaced, by values of output units (o)), i.e.,
Ci = 0; +YG

Associative Memory

 store a set of p patterns

* when presented with a new pattern,
network responds by producing closest
stored pattern “in memory”

* uses relaxation learning

Hopfield Networks

N interconnected neurons, potentially
completely recurrent

all neurons are both input & output; all weights
are symmetric (but w,=0)
activation values are binary (typically -1/+1)

activation rule: a;= | +1 if Zw;a;>0,

-1 otherwise
where 91 Is the threshold

Learning and Recall

« set weights to ensure learned patterns are stable

« pattern x° stable if, when clamped (activation fixed for
the given neurons), all neurons stable

 recalling a pattern is achieved by activating (possibly
a subset of) neurons with the corresponding inputs
and then letting the network settle

Hebbian learning

* Wy < correlation of activations (+1)

 for n patterns x”

w, =2 xpxp i [# J, else 0

* limits of learning: for a network of N neurons,
recall errors become severe above 0.15N
“memories”

- stored patterns become unstable
 spurious stable states appear

Why simple Hebbian Learning Fails

« don’t know how to set weights to or from “hidden”
units (or those that aren’t part of a learned pattern)

.". can’'t generalize beyond simple Hopfield Networks

Boltzmann Machines
[Ackley, Hinton, & Sejnowski 1985]

 similar to Hopfield network
* units take on values of O or 1

* weights are symmetric

 but allows for hidden units (h)
as well as visible units (v)

« weights adjusted through stochastic
update rule based on simulated
annealing; thus, Boltzmann machine
can be viewed as a Monte Carlo version
of Hopfield network

Energy

* global energy of network is: E = -2, w; a;a;+ 26,4,

« first term suggests that the network has minimal energy
when both units / and j are correlated and connected by a
positive weight

 thus, the difference in global energy resulting from
unit /being off (0) rather than on (1) is:

« Boltzmann Factor: energy of a state is proportional to
the negative log probability of that state, i.e., higher
energy states have lower probability

Simulated Annealing

« start with high T

* network run by repeatedly choosing a unit and setting
its state according to activation function

« gradually reduce T to 1 until energy level fluctuates
around global minimum

- at low temperature, there is a strong bias to states
with low energy

Probabilistic Activation Function

« Boltzmann machine units are stochastic; probabilistic
activation function:
P(a, «— 1) = 1/(1 + eEilT)
where T is the temperature of the system

Boltzmann Learning

 learning works by adjusting weights so that global
states with highest probabilities get lowest energies

« divide units into visible units (V) and hidden units (H)
* training data vectors applied to V
o distribution of training vectors denoted P*(V)

« converged distribution of visible units of Boltzmann
machine denoted P-(V)

« want to minimize Kullback-Leibler distance
(asymmetric divergence error term) over all possible
states of V:

G=2Z,PW)hEW/ PW)

Contrastive Hebbian Learning: Waking Phase

 for each training pattern, input and output
units are clamped to pattern

» network permitted to settle (annealing)

» frequency of correlated activation <a;a;>clameed

between all units measured for some fixed
time at thermal equilibrium

* Incremental version of Hebbian learning used:

Aw, = oL<a;a;>Clamped

Contrastive Hebbian Learning: Sleeping

* network run freely (no units clamped) and
annealed

 frequency of correlated activation <aa>"ee
between all units measured for some fixed

time at thermal equilibrium

e reverse incremental version of Hebbian
learning used:

Aw,= —a<aa;>e

Motivation

« when network response is identical between clamped
and non-clamped phases, weights are stable

* waking and sleeping learning will balance each other

« when network response without clamping differs from
its response with clamping, the difference is error and
Is compensated for by sleeping-phase learning

Restricted Boltzmann Machine (RBM)

learning time for Boltzmann
machine can be excessive

can be made efficient by not
allowing visible-visible or hidden-
hidden connections:

 starting with a data vector on the
visible units, update all of the hidden
units in parallel.

« update all of the visible units in
parallel to get a "reconstruction”.

e can use the trained hidden units as
input data for a new, higher-level
RBM

Visible units

| Hidden units

