
Recurrent (or Auto-Associative) 
Neural Networks 



Elman Network 

•  includes a layer of 
“context units” 
connected from 
hidden layer with 
weight of 1 

•  at each iteration, 
hidden unit 
outputs copied 
into context units 



Jordan Network 

•  similar to Elman network but: 
•  context units connected to output layer 
•  values in context units (ci) are updated, not 

replaced, by values of output units (oi), i.e., 
ci = oi + γci 



Associative Memory 

•  store a set of p patterns 
•  when presented with a new pattern, 

network responds by producing closest 
stored pattern “in memory” 

•  uses relaxation learning 



Hopfield Networks 

•  N interconnected neurons, potentially 
completely recurrent 

•  all neurons are both input & output; all weights 
are symmetric (but  wii=0 ) 

•  activation values are binary (typically -1/+1) 

 
•  activation rule: aj =  +1     if   Σiwij ai > θj 

     -1     otherwise 
 where θj is the threshold 



Learning and Recall 

•  set weights to ensure learned patterns are stable 
•  pattern xp stable if, when clamped (activation fixed for 

the given neurons), all neurons stable 
•  recalling a pattern is achieved by activating (possibly 

a subset of) neurons with the corresponding inputs 
and then letting the network settle 



Hebbian learning 

•  wij  ← correlation of activations (+1) 

•  for n patterns xp 

wij = Σp xi
p
 xj

p
  if i ≠ j, else 0 

•  limits of learning: for a network of N neurons, 
recall errors become severe above 0.15N  
“memories” 
•  stored patterns become unstable 
•  spurious stable states appear 



Why simple Hebbian Learning Fails 

 
•  don’t know how to set weights to or from “hidden” 

units (or those that aren’t part of a learned pattern) 
 ∴ can’t generalize beyond simple Hopfield Networks 



Boltzmann Machines 
[Ackley, Hinton, & Sejnowski 1985] 

•  similar to Hopfield network 
•  units take on values of 0 or 1 
•  weights are symmetric 
•  but allows for hidden units (h) 

as well as visible units (v) 

•  weights adjusted through stochastic 
update rule based on simulated 
annealing; thus, Boltzmann machine 
can be viewed as a Monte Carlo version 
of Hopfield network 



Energy  

•  global energy of network is: E = -Σi≠j wij ai aj + Σiθi ai  
•  first term suggests that the network has minimal energy 

when both units i and j are correlated and connected by a 
positive weight 

•  thus, the difference in global energy resulting from 
unit i being off (0) rather than on (1) is: 
ΔΕi = Εi-off - Εi-on= 0 – (-Σj wij aj+θi) = Σj wij aj - θi 

•  Boltzmann Factor: energy of a state is proportional to 
the negative log probability of that state, i.e., higher 
energy states have lower probability 



Simulated Annealing 

 
•  start with high T 
•  network run by repeatedly choosing a unit and setting 

its state according to activation function 
•  gradually reduce T to 1 until energy level fluctuates 

around global minimum 
•  at low temperature, there is a strong bias to states 

with low energy 



Probabilistic Activation Function 

•  Boltzmann machine units are stochastic; probabilistic 
activation function: 
P(ai ← 1) = 1/(1 + e-ΔEi/T) 
where T is the temperature of the system 

 



Boltzmann Learning 

•  learning works by adjusting weights so that global 
states with highest probabilities get lowest energies 
•  divide units into visible units (V) and hidden units (H) 
•  training data vectors applied to V 
•  distribution of training vectors denoted P+(V) 
•  converged distribution of visible units of Boltzmann 
machine denoted P-(V) 
•  want to minimize Kullback-Leibler distance 
(asymmetric divergence error term) over all possible 
states of V: 
 G = Σv P+(v) ln (P+(v) / P-(v))  



Contrastive Hebbian Learning: Waking Phase 

•  for each training pattern, input and output 
units are clamped to pattern 

•  network permitted to settle (annealing) 
•  frequency of correlated activation <aiaj>clamped  

between all units measured for some fixed 
time at thermal equilibrium 

•  incremental version of Hebbian learning used:  
Δwij = α<aiaj>clamped  

 



Contrastive Hebbian Learning: Sleeping 

•  network run freely (no units clamped) and 
annealed 

•  frequency of correlated activation <aiaj>free 

between all units measured for some fixed 
time at thermal equilibrium 

•  reverse incremental version of Hebbian 
learning used:  
Δwij =  -α<aiaj>free

 



Motivation 

•  when network response is identical between clamped 
and non-clamped phases, weights are stable 

•  waking and sleeping learning will balance each other  
•  when network response without clamping differs from 

its response with clamping, the difference is error and 
is compensated for by sleeping-phase learning 



Restricted Boltzmann Machine (RBM) 

•  learning time for Boltzmann 
machine can be excessive 

•  can be made efficient by not 
allowing visible-visible or hidden-
hidden connections: 
•  starting with a data vector on the 

visible units, update all of the hidden 
units in parallel. 

•  update all of the visible units in 
parallel to get a "reconstruction". 

•  can use the trained hidden units as 
input data for a new, higher-level 
RBM 


