
Planning

Agenda

•  Building on logic to form plans
•  How do we choose from a number of possible

actions:
•  to bring us closer to the goal?
•  in a more "intelligent“ manner than search?

Quick Primer on First-Order Logic

•  Predicates:
•  assume that Spot and Fido are dogs
•  then the predicate, Dog(x)

 returns TRUE if x is Spot or Fido

Motivation

•  previously considered decision-making problems
from the perspective of search and game-playing
•  Given current state, enumerate all possible future states
•  Pick best action to execute from current state

•  when does this make sense?

Grocery Shopping as Search
“from home, get milk, some bananas, and a cordless drill”

•  assume we will use search technique with heuristic:
minimize the number of items we have not yet
acquired

•  how to choose best operator? may be thousands!
•  before agent can purchase anything, it has to get to

the store, but how does a search technique know
this?

A Better Way (sometimes)

•  many actions are obviously useless or unproductive
•  can be quite expensive to examine all of these
•  what if we know outcome of actions?

planning = find a sequence of actions that achieves a
goal when performed in a given state

Planning Domain Definition Language

•  states: conjunction of positive, functionless atoms
•  e.g., Poor ∧ Unknown or

 At(Truck1, Melbourne)

•  initial state: specifies everything that is true in the
world (everything else assumed false)

•  action schema: describes what changes, using a
subset of first-order logic

•  goals: represented by conjunctions of literals that
may contain variables
•  e.g., At(p,SFO) ∧ Plane(p)

Comparison of Actions

in search
•  described by state

transitions
•  must be considered

in-order

in planning
•  described by:

•  preconditions: what
must be true before
action can be performed

•  effects: what must be
true (what changed)
after action is executed

•  can be considered in
any order

Action Schema

Example: for flying a plane from one location to another:
Action (Fly (p, from, to),
 PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬At(p,from) ∧ At(p,to))

•  every literal not mentioned in EFFECT remains unchanged
•  effects divided into positive literals, ADD(a) & negative literals, DEL(a)
•  result of performing action a in state s:

RESULT(s,a) = (s – DEL(a)) ∪ ADD(a)

Forward State-Space Search
(Progression) Planners

•  search forward from initial state
•  determine which operators apply using preconditions
•  use effects lists to compute new state

Algorithm

procedure PROGRESSION-PLAN(s, plan)
 for some possible operator, αι
 u ← result of UNIFY(s, preconditions of αi)
 if unification step succeeds then
 add αi to plan
 apply substitution list of u to DeleteList(αi) and AddList(αi)
 t ← s
 for each di in DeleteList(αi) delete di from t
 for each ai in AddList(αi) add ai to t
 if GOAL-TEST (t) succeeds then return plan
 return PROGRESSION-PLAN (t, plan)

Blocks World Action Schema

move block b from x to y:

Action(Move(b,x,y)
PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y),
EFFECT: On(b,y) ∧ Clear(x) ∧ ¬On(b,x) ∧ ¬Clear(y))

move block b from x to the table:

Action(MoveToTable(b,x)
PRECOND: On(b,x) ∧ Clear(b),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬On(b,x))

Practical Considerations

•  main problem: often have huge search space
because of branching factor

•  not practical for real-world problems

Backward State-Space (Regression)
Planners

•  search backwards from goal state to initial state
•  advantage: consider only relevant actions; i.e., those

that achieve one of the conjuncts of the goal
•  significantly decreases branching factor

Regression Planner

procedure REGRESSION-PLAN (t, plan)
 for some possible operator, α

if current state contains ≥1 literal L, that unifies with a member ai of AddList(α)
 add α to head of plan

u ← result of UNIFY(L, ai)
p' ← apply substitution list of u to Preconditions(α)
t' ← apply substitution list of u to terms of t
regress each member m of t' through a as follows:

if m is in AddList(α) then True
else if m is in DeleteList(α) then False
else leave m as is

previous state s ←UNION (p', t')
 if s = INITIAL-STATE then return plan
 return REGRESSION-PLAN (s, plan)

Partial Order Planning (POP)

start with initial plan
•  consists only of Start and Finish states
•  at each iteration, add one more step
•  if inconsistent, backtrack
only adds steps that achieve unachieved preconditions

Homework

•  Readings:
•  Ch 15.3

•  Video:
•  Eisner lecture on Hidden Markov Models

•  Assignment #1 submission
•  due September 30 on Moodle

