### **Clustering and Component Analysis**

### Terminology

- each data source (image, sound clip, etc.) can be represented by a single vector *d* of length *N*
- *N* is the dimension in which the data lies
- Iet D = {d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>M</sub>} denote the set of M such data in the database

### Clustering

Given D, group the data points
d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>M</sub> in clusters according to a criterion of similarity

### **Component Analysis**

- each data vector *d* is of length (dimension) *N*
- determine which dimensions are most important to represent the data of *D*

### **Dimensionality Reduction**

- use component analysis to find an optimal subspace of dimension S, often where S << N</li>
  - e.g., compress a colour image to store it in the minimum number of bits with sufficient quality to identify who is who

### Clustering with k-means

- partitions the data points into k disjoint subsets based on a distance measure between instances
- advantage: easy to implement
- input: a set of *N*-dimensional vectors {**d**<sub>1</sub>, **d**<sub>2</sub>, ... **d**<sub>m</sub>}
- output: a mapping  $C = \{C_1, C_2, \dots, C_k\}$  of the vectors  $d_i$  into *k* disjoint clusters

### k-means algorithm

- initialize C randomly
- repeat
  - compute centroid of each cluster
  - assign each vector to the closest centroid using Euclidean distance
- until C unchanged

### Termination of k-means clustering

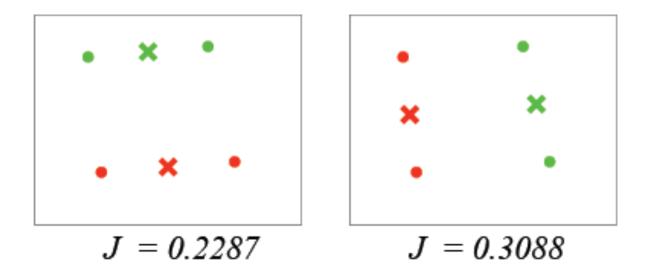
for given data {d<sub>1</sub>, d<sub>2</sub>, ... d<sub>m</sub>} and clustering C, consider the sum of the Euclidean distances between each vector and the center of its cluster:

$$J = \sum_{i=1}^{m} \|d_i - \mu_{C(i)}\|$$

- finitely many possible clusterings: at most k<sup>m</sup>
- each time we reassign a vector to a cluster with a nearer centroid, J decreases
- each time we recompute the centroids of each cluster, J decreases (or stays the same) => algorithm must terminate!

# Does k-means always find same answer?

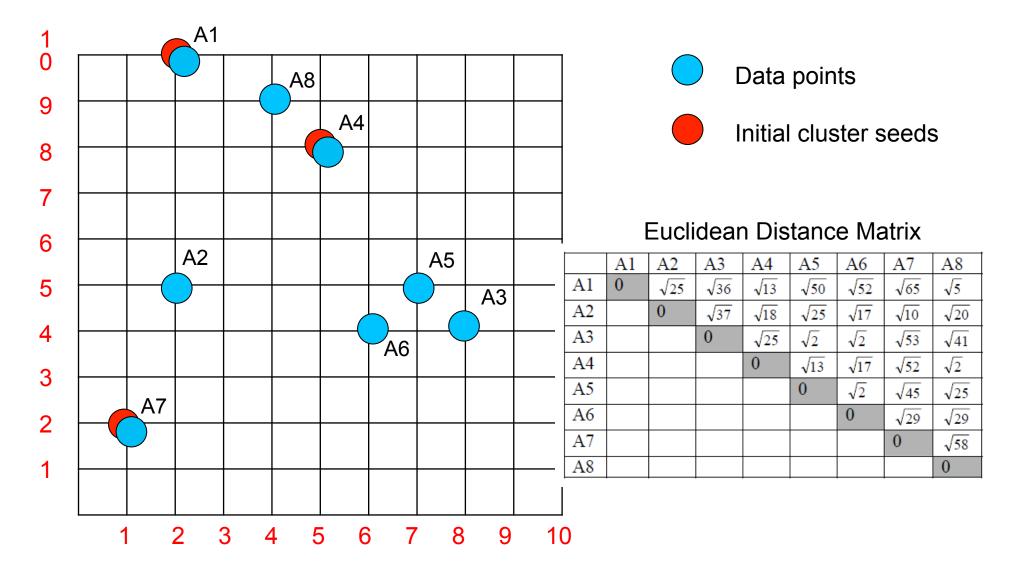
- solution is *locally optimal*
- error function has many local minima
- depends on initial assignment of instances to clusters



### **Finding good initial configurations**

- place first center on a randomly chosen data point
- place second center on a data point as far away as possible from first
- place the *i*<sup>th</sup> center as far away from the closest of center 1 through *i*-1

#### **K-means exercise**

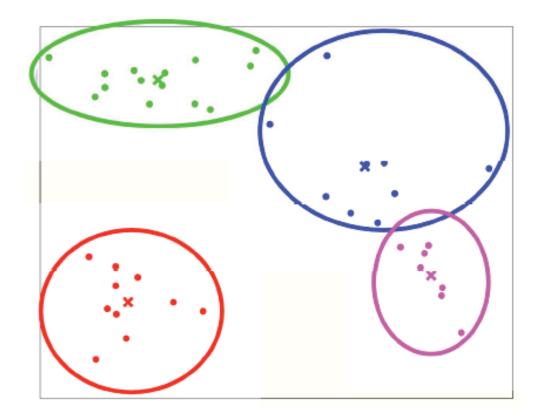


### **Choosing number of clusters**

- delete clusters that cover too few points
- split clusters that cover too many points
- add extra clusters for "outliers"
- minimum description length principle: minimize loss + complexity of the clustering
- perceptual or other application-specific criteria

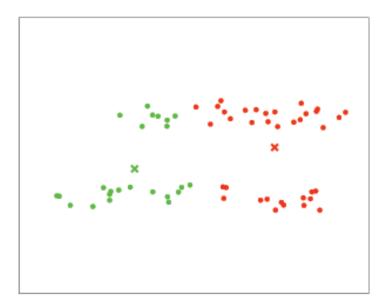
# Why use sum of squared Euclidian distances?

subjective: produces nice round clusters

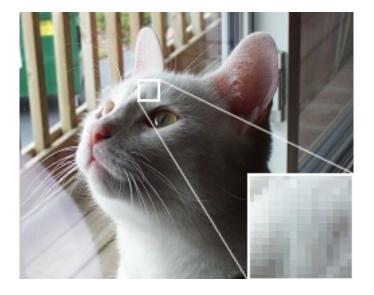


# Why <u>not</u> use sum of squared Euclidian distances?

- produces nice round clusters
- differently scaled axes can dramatically affect results
- symbolic attributes may have to be treated differently



# Example application: Color Quantization



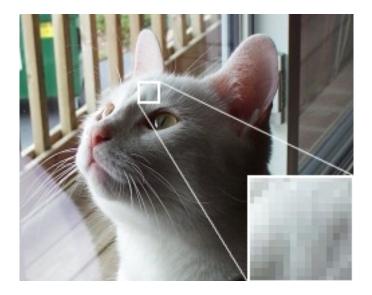
original: 24-bit RGB color

- want compressed version to look as similar as possible to original
- can transmit only compressed version plus color map
- want to minimize reconstruction error

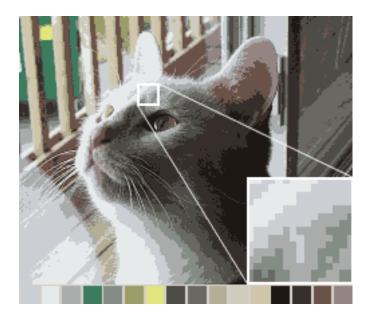
### **Review of Clustering**

- Clustering of data using k-means
- How to choose initial centroids
- Pro and con of Euclidean distance
- Dimensionality reduction as an application

### **Example application: Color Quantization**



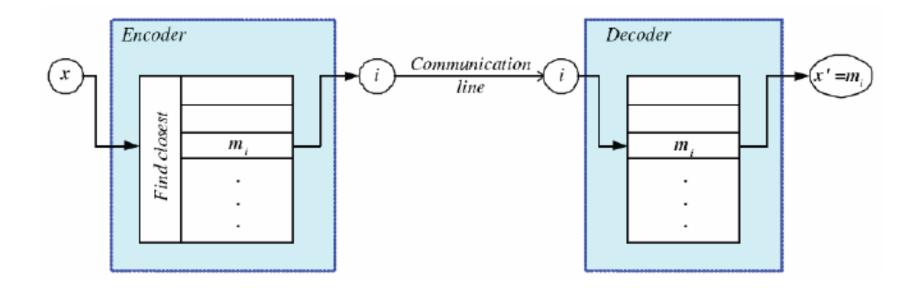
original: 24-bit RGB color



reduced to 4-bits (16 colors)

### **Example application: Speech Coder**

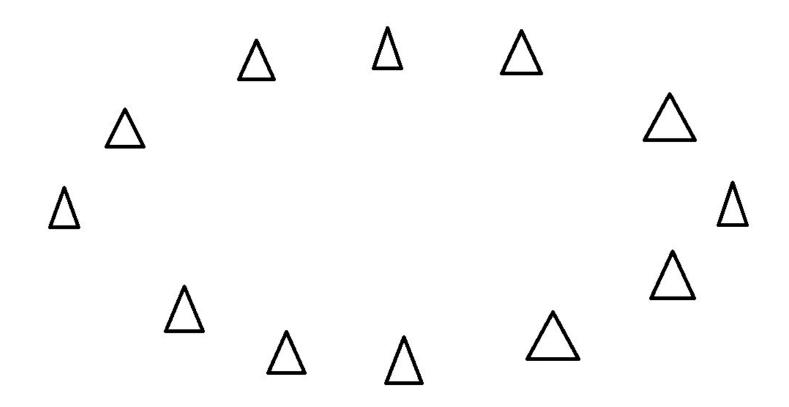
 determine a compact (low bits/sec) representation of speech, possibly for transmission over communication line



### Today's agenda

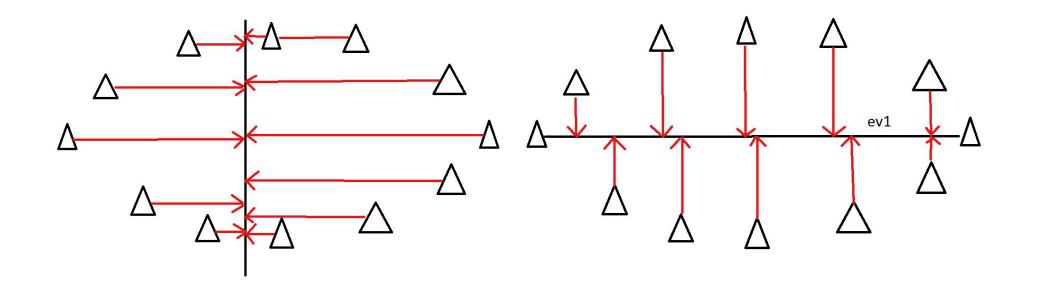
- Principal Component Analysis
- (and possibly, intro to Machine Learning)

### **Principal Components Analysis**

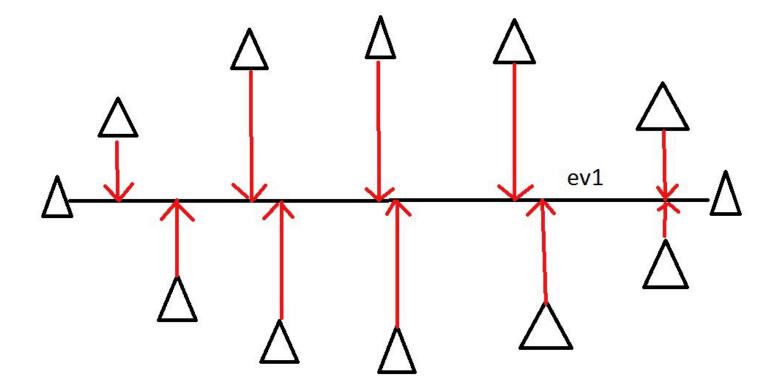


Credit: https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/

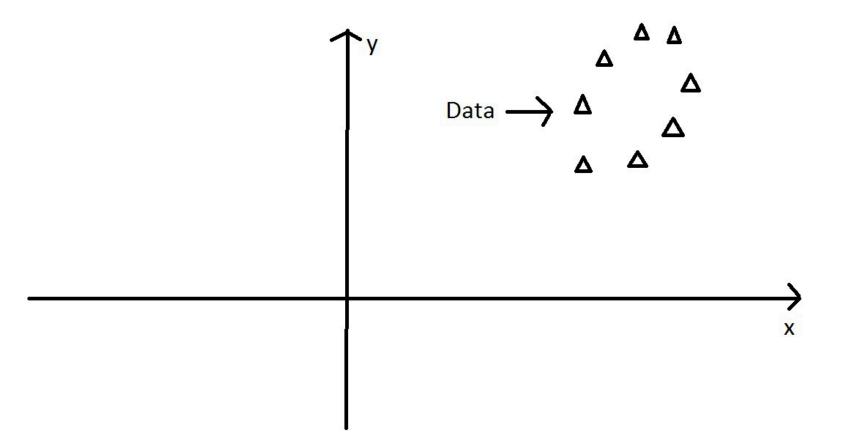
### Along which axis does the data exhibit the greatest variance?



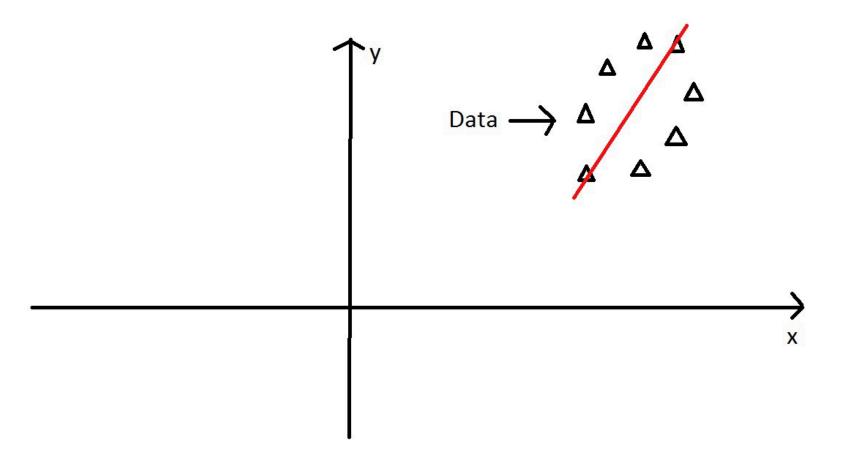
### So that's your principal component



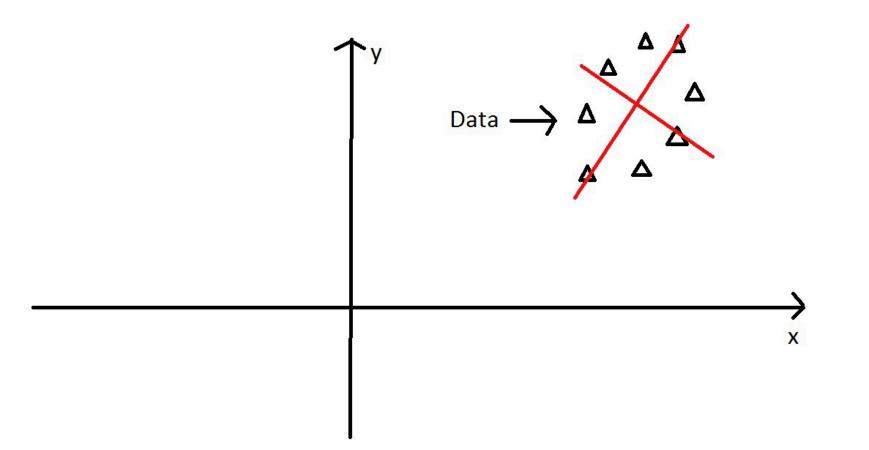
#### Where's the principal component now?



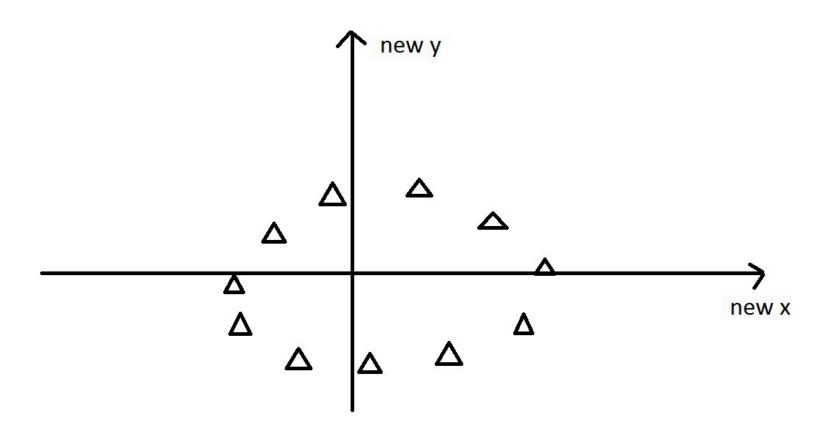
### Principal component doesn't need to be aligned with coordinate axes



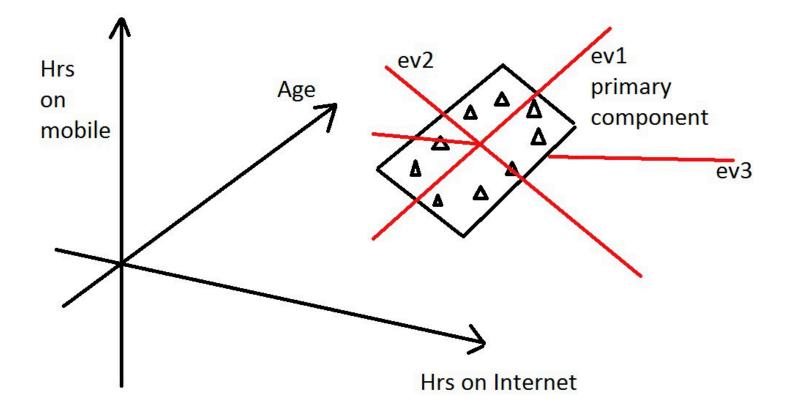
### For 2-D data, the second principal component is perpendicular to the first



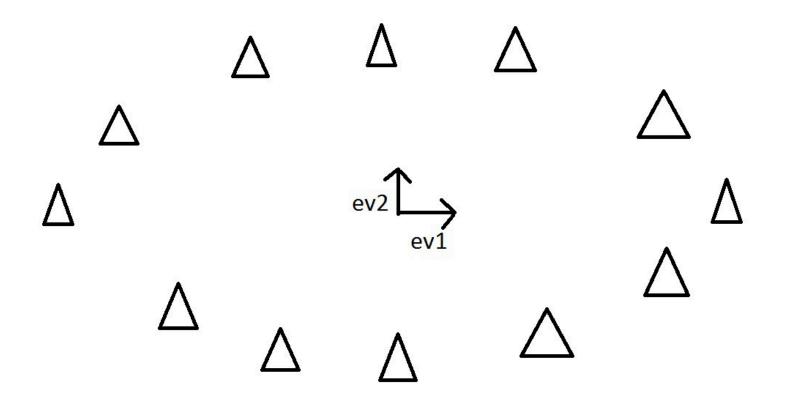
# We can now use those two principal components to define a new basis for the data



### What about in higher dimensions?



# If the third eigenvalue is small, could ignore it to simplify the data



### **Determining the components**

- find first axis  $v_1$  that best models the data points  $d_i$
- this gives a one-dimensional model for the data
- next, find another axis  $v_2$  (orthogonal to  $v_1$ ) that best models the deviation of data points from  $v_1$
- repeat as desired for v<sub>j</sub> up to dimensionality of the data space

### Finding the axes v: two interpretations

- 1. minimize the square modeling error:  $E_R = \sum \|d_i v^T d_i v\|^2$ where  $v^T d_i v$  represents projection of the data onto axis v
- 2. maximize the variance of the data after projection onto the axis v (assuming the projection has zero mean):  $2 \frac{1}{2} \sum_{i=1}^{N} (r_{i} r_{i})^{2}$

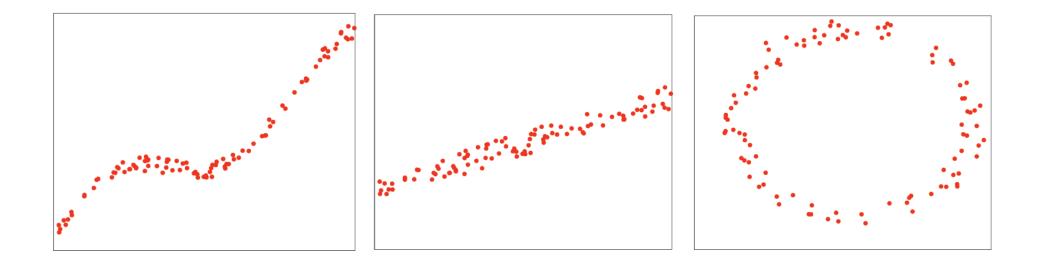
$$\sigma^2 = \frac{1}{N-1} \sum \left( d_i^T v \right)^2$$

### How to find them

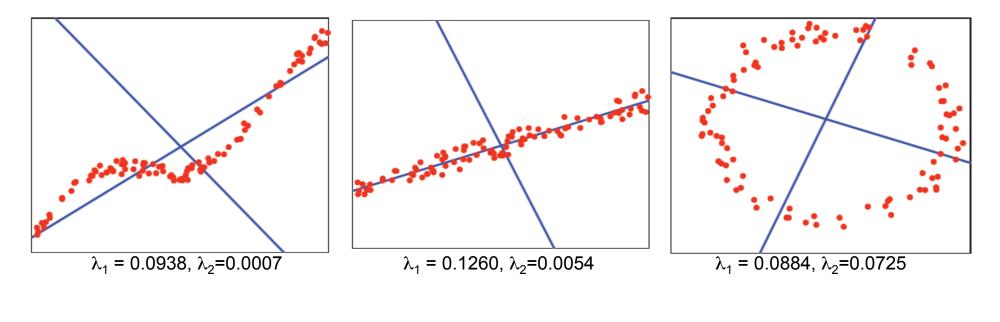
. . .

- Principal components are simply the eigenvectors of the covariance matrix
  - 1<sup>st</sup> principal component is the eigenvector with greatest eigenvalue
  - 2<sup>nd</sup> principal component is the eigenvector with second greatest eigenvalue

### How many dimensions do you need? Depends on the data



### First two principal components



$$\mathbf{w}_{1} = \arg \max_{\|\mathbf{w}\|=1} \operatorname{var}\{\mathbf{w}^{T}\mathbf{x}\} = \arg \max_{\|\mathbf{w}\|=1} E\left\{\left(\mathbf{w}^{T}\mathbf{x}\right)^{2}\right\}$$

### **Face Recognition**

 Identify face from a database of known faces.



?

From MIT database



### Why is this hard?

- faces are similar, same set of features (e.g. eyes, nose, mouth) in same configuration
- have to find representation that captures enough features to identify face from database of faces.
- early attempts model relations between face features
- ignores important information about texture and shape

### **Face Recognition using PCA**

[Sirovich and Kirby, 1987, 1990]

- PCA provides a set of standard ingredients to model faces
- good results using simple recognition algorithms with eigenface decomposition, e.g. nearest neighbor classifier
- found that 50 Principal Components give an average modeling error of 3.68% over ten test images
- better results by performing PCA on local features of an image

### **Claimed advantages**

- good for vague recognition that face is "known" or "unknown"
- capture global, non-subjective features of faces

### **Eigenfaces** [Turk & Pentland, 1991]

