
Clustering and Component Analysis

Terminology

§  each data source (image, sound clip,
etc.) can be represented by a single
vector d of length N

§  N is the dimension in which the data lies
§  let D = {d1, d2, …, dM} denote the set of

M such data in the database

Clustering

§  Given D, group the data points
d1, d2, …, dM in clusters according to a
criterion of similarity

Component Analysis

§  each data vector d is of length (dimension) N
§  determine which dimensions are most

important to represent the data of D

Dimensionality Reduction

§  use component analysis to find an optimal
subspace of dimension S, often where S << N
§  e.g., compress a colour image to store it in the

minimum number of bits with sufficient quality to
identify who is who

Clustering with k-means

§  partitions the data points into k disjoint subsets based
on a distance measure between instances

§  advantage: easy to implement
§  input: a set of N-dimensional vectors {d1, d2, … dm}
§  output: a mapping C = {C1, C2, … Ck} of the vectors di

into k disjoint clusters

k-means algorithm

§  initialize C randomly
§  repeat

§  compute centroid of each cluster
§  assign each vector to the closest centroid using Euclidean

distance

§  until C unchanged

Termination of k-means clustering

§  for given data {d1, d2, … dm} and clustering C,
consider the sum of the Euclidean distances between
each vector and the center of its cluster:

§  finitely many possible clusterings: at most km

§  each time we reassign a vector to a cluster with a
nearer centroid, J decreases

§  each time we recompute the centroids of each
cluster, J decreases (or stays the same) =>
algorithm must terminate!

J = di −µC(i)
i=1

m

∑

Does k-means always find same
answer?

§  solution is locally optimal
§  error function has many local minima
§  depends on initial assignment of instances to clusters

Finding good initial configurations

§  place first center on a randomly chosen data point
§  place second center on a data point as far away as

possible from first
§  place the ith center as far away from the closest of

center 1 through i-1

K-means exercise

1 2 3 4 5 6 7 8 9 10

1
0

9

8

7

6

5

4

3

2

1

Data points

Initial cluster seeds

A1

A2

A4

A8

A7

A5

A3

A6

Euclidean Distance Matrix

Choosing number of clusters

§  delete clusters that cover too few points
§  split clusters that cover too many points
§  add extra clusters for “outliers”
§  minimum description length principle:

minimize loss + complexity of the clustering
§  perceptual or other application-specific criteria

Why use sum of squared Euclidian
distances?

§  subjective: produces nice round clusters

Why not use sum of squared Euclidian
distances?

§  produces nice round clusters
§  differently scaled axes can dramatically affect results
§  symbolic attributes may have to be treated differently

Example application: Color
Quantization

original: 24-bit RGB color

§  want compressed
version to look as
similar as possible to
original

§  can transmit only
compressed version
plus color map

§  want to minimize
reconstruction error

Review of Clustering

§  Clustering of data using k-means
§  How to choose initial centroids
§  Pro and con of Euclidean distance
§  Dimensionality reduction as an application

Example application: Color Quantization

original: 24-bit RGB color reduced to 4-bits (16 colors)

Example application: Speech Coder

§  determine a compact (low bits/sec) representation of speech,
possibly for transmission over communication line

Today’s agenda

§  Principal Component Analysis
§  (and possibly, intro to Machine

Learning)

Principal Components Analysis

Credit: https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-
eigenvalues-and-dimension-reduction/

Along which axis does the data exhibit
the greatest variance?

So that’s your principal component

Where’s the principal component now?

Principal component doesn’t need to
be aligned with coordinate axes

For 2-D data, the second principal
component is perpendicular to the first

We can now use those two principal
components to define a new basis for
the data

What about in higher dimensions?

If the third eigenvalue is small, could
ignore it to simplify the data

Determining the components

§  find first axis v1 that best models the data points di
§  this gives a one-dimensional model for the data
§  next, find another axis v2 (orthogonal to v1) that best

models the deviation of data points from v1
§  repeat as desired for vj up to dimensionality of the

data space

Finding the axes v: two interpretations

1. minimize the square modeling error:
where represents projection of the data onto axis v

2. maximize the variance of the data after projection

onto the axis v (assuming the projection has zero
mean):

€

ER = di − v
T div

2
∑

€

vT div

€

σ 2 = 1
N −1

di
Tv()

2
∑

How to find them

§  Principal components are simply the
eigenvectors of the covariance matrix
§  1st principal component is the eigenvector

with greatest eigenvalue
§  2nd principal component is the eigenvector

with second greatest eigenvalue
§ …

How many dimensions do you need?
Depends on the data

First two principal components

λ1 = 0.0884, λ2=0.0725 λ1 = 0.1260, λ2=0.0054 λ1 = 0.0938, λ2=0.0007

Face Recognition

§  Identify face from a
database of known
faces.

?

From MIT database

Why is this hard?

§  faces are similar, same set of features (e.g. eyes, nose, mouth)
in same configuration

§  have to find representation that captures enough features to
identify face from database of faces.

§  early attempts – model relations between face features
§  ignores important information about texture and shape

Face Recognition using PCA
[Sirovich and Kirby, 1987, 1990]

§  PCA provides a set of standard ingredients to model faces
§  good results using simple recognition algorithms with eigenface

decomposition, e.g. nearest neighbor classifier
§  found that 50 Principal Components give an average modeling

error of 3.68% over ten test images
§  better results by performing PCA on local features of an image

§  good for vague recognition that face is “known” or
“unknown”

§  capture global, non-subjective features of faces

Claimed advantages

Eigenfaces
[Turk & Pentland, 1991]

