
Clustering and Component Analysis 



Terminology 

§  each data source (image, sound clip, 
etc.) can be represented by a single 
vector d of length N 

§  N is the dimension in which the data lies 
§  let D = {d1, d2, …, dM} denote the set of 

M such data in the database 



Clustering 

§  Given D, group the data points  
d1, d2, …, dM in clusters according to a 
criterion of similarity 



Component Analysis 

§  each data vector d is of length (dimension) N 
§  determine which dimensions are most 

important to represent the data of D 



Dimensionality Reduction 

§  use component analysis to find an optimal 
subspace of dimension S, often where S << N 
§  e.g., compress a colour image to store it in the 

minimum number of bits with sufficient quality to 
identify who is who 



Clustering with k-means 

§  partitions the data points into k disjoint subsets based 
on a distance measure between instances  

§  advantage: easy to implement 
§  input: a set of N-dimensional vectors {d1, d2, … dm}  
§  output: a mapping C = {C1, C2, … Ck} of the vectors di 

into k disjoint clusters 
 



k-means algorithm 

§  initialize C randomly 
§  repeat 

§  compute centroid of each cluster 
§  assign each vector to the closest centroid using Euclidean 

distance 

§  until C unchanged 



Termination of k-means clustering 

§  for given data {d1, d2, … dm} and clustering C, 
consider the sum of the Euclidean distances between 
each vector and the center of its cluster: 

 

§  finitely many possible clusterings: at most km 

§  each time we reassign a vector to a cluster with a 
nearer centroid, J decreases 

§  each time we recompute the centroids of each 
cluster, J decreases (or stays the same) =>  
algorithm must terminate! 

J = di −µC(i)
i=1

m

∑



Does k-means always find same 
answer? 

§  solution is locally optimal 
§  error function has many local minima 
§  depends on initial assignment of instances to clusters 



 
Finding good initial configurations 

§  place first center on a randomly chosen data point 
§  place second center on a data point as far away as 

possible from first 
§  place the ith center as far away from the closest of 

center 1 through i-1 



K-means exercise 
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Euclidean Distance Matrix 



Choosing number of clusters 

§  delete clusters that cover too few points 
§  split clusters that cover too many points 
§  add extra clusters for “outliers” 
§  minimum description length principle:  

minimize loss + complexity of the clustering 
§  perceptual or other application-specific criteria 



Why use sum of squared Euclidian 
distances? 

§  subjective: produces nice round clusters 



Why not use sum of squared Euclidian 
distances? 

§  produces nice round clusters 
§  differently scaled axes can dramatically affect results 
§  symbolic attributes may have to be treated differently 
 



Example application: Color 
Quantization 

original: 24-bit RGB color 

§  want compressed 
version to look as 
similar as possible to 
original 

§  can transmit only 
compressed version 
plus color map  

§  want to minimize 
reconstruction error 



Review of Clustering 

§  Clustering of data using k-means 
§  How to choose initial centroids 
§  Pro and con of Euclidean distance  
§  Dimensionality reduction as an application 



Example application: Color Quantization 

original: 24-bit RGB color reduced to 4-bits (16 colors) 



Example application: Speech Coder 

§  determine a compact (low bits/sec) representation of speech, 
possibly for transmission over communication line 

 



Today’s agenda 

§  Principal Component Analysis 
§  (and possibly, intro to Machine 

Learning) 



Principal Components Analysis 

Credit: https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-
eigenvalues-and-dimension-reduction/ 



Along which axis does the data exhibit 
the greatest variance? 



So that’s your principal component 



Where’s the principal component now? 



Principal component doesn’t need to 
be aligned with coordinate axes 



For 2-D data, the second principal 
component is perpendicular to the first 



We can now use those two principal 
components to define a new basis for 
the data 



What about in higher dimensions? 



If the third eigenvalue is small, could 
ignore it to simplify the data 



Determining the components 

§  find first axis v1 that best models the data points di 
§  this gives a one-dimensional model for the data 
§  next, find another axis v2 (orthogonal to v1) that best 

models the deviation of data points from v1 
§  repeat as desired for vj up to dimensionality of the 

data space 



Finding the axes v: two interpretations 

1. minimize the square modeling error: 
where      represents projection of the data onto axis v 

 
2. maximize the variance of the data after projection 

onto the axis v (assuming the projection has zero 
mean): 

€ 

ER = di − v
T div

2
∑
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How to find them 

§  Principal components are simply the 
eigenvectors of the covariance matrix 
§  1st principal component is the eigenvector 

with greatest eigenvalue 
§  2nd principal component is the eigenvector 

with second greatest eigenvalue 
§ … 



How many dimensions do you need?  
Depends on the data 



First two principal components 

λ1 = 0.0884, λ2=0.0725 λ1 = 0.1260, λ2=0.0054 λ1 = 0.0938, λ2=0.0007 



Face Recognition 

§  Identify face from a 
database of known 
faces. 
 

? 

From MIT database 



Why is this hard? 

§  faces are similar, same set of features (e.g. eyes, nose, mouth) 
in same configuration 

§  have to find representation that captures enough features to 
identify face from database of faces. 

§  early attempts – model relations between face features 
§  ignores important information about texture and shape 



Face Recognition using PCA 
[Sirovich and Kirby, 1987, 1990] 

§  PCA provides a set of standard ingredients to model faces 
§  good results using simple recognition algorithms with eigenface 

decomposition, e.g. nearest neighbor classifier 
§  found that 50 Principal Components give an average modeling 

error of 3.68% over ten test images 
§  better results by performing PCA on local features of an image 



§  good for vague recognition that face is “known” or 
“unknown” 

§  capture global, non-subjective features of faces 

Claimed advantages 



Eigenfaces 
[Turk & Pentland, 1991] 


