Non-Parametric Models

Review of last class: Decision Tree Learning

- dealing with the overlearning problem: pruning
- ensemble learning
- boosting

Agenda

- Nearest neighbor models
- Finding nearest neighbors with kd trees
- Locality-sensitive hashing
- Nonparametric regression

Non-Parametric Models

- doesn't mean that the model lacks parameters
- parameters are not known or fixed in advance
- make no assumptions about probability distributions
- instead, structure determined from the data

Comparison of Models

Parametric

- data summarized by a fixed set of parameters
- once learned, the original data can be discarded
- good when data set is relatively small – avoids overfitting
- best when correct parameters are chosen!

Non-Parametric

- data summarized by an unknown (or non-fixed) set of parameters
- must keep original data to make predictions or to update model
- may be slower, but generally more accurate

Instance-Based Learning

Decision Trees

- examples (training set) described by:
 - input: the values of attributes
 - output: the classification (yes/no)
- can represent any Boolean function

Another NPM approach: Nearest neighbor (k-NN) models

- given query x_q
- answer query by finding the k examples nearest to x_a
- classification:
 - take plurality vote (majority for binary classification) of neighbors
- regression
 - take mean or median of neighbor values

Modeling the data with k-NN

Measuring "nearest"

 Minkowski distance calculated over each attribute (or dimension) i

$$L^{p}(\mathbf{x_{j}}, \mathbf{x_{q}}) = (\sum_{i} |x_{j,i} - x_{q,i}|^{p})^{1/p}$$

- p = 2: Euclidean distance typically used if dimensions measure similar properties (e.g., width, height, depth)
- p = 1: Manhattan distance if dimensions measure dissimilar properties (e.g., age, weight, gender)

Recall a problem we faced before

- shape of the data looks very different depending on the scale
 - e.g., height vs. weight, with height in mm or km
- similarly, with k-NN, if we change the scale, we'll end up with different neighbors

Simple solution

• simple solution is to normalize:

$$x'_{j,i} = (x_{j,i} - \mu_i) / \sigma_i$$

Example: Density estimation

128-point sample

MoG representation

Density Estimation using k-NN

of neighbours impacts quality of estimation

Curse of dimensionality

- we want to find k = 10 nearest neighbors among N=1,000,000 points of an n-dimensional space
- sounds easy, right?
- volume of neighborhood is k/N
- average side length I of neighborhood is (k/N)^{1/n}

n	I
1	.00001
2	.003
3	.002
10	.3
20	.56

k-dimensional (kd) trees

- balanced binary tree with arbitrary # of dimensions
- data structure that allows efficient lookup of nearest neighbors (when # of examples >> k)
- recursively divides data into left and right branches based on value of dimension i

k-dimensional (kd) trees

- query value might be on left half of divide but have some of k
 nearest neighbors on right half
- decide whether to inspect the right half based on distance of best match found from dividing hyperplane

Locality-Sensitive Hashing (LSH)

- uses a combination of n random projections, built from subsets of the bit-string representation of each value
- value of each of the n projections stored in the associated hash bucket

Locality-Sensitive Hashing (LSH)

- on search, the set of points from all hash buckets corresponding to the query are combined together
- then measure distance from query value to each of the returned values
- real-world example:
 - data set of 13 million samples of 512 dimensions
 - LSH only needs to examine a few thousand images
 - 1000-fold improvement over kd trees!

Nonparametric Regression Models

 Let's see how different NPM strategies fare on a regression problem

Piecewise linear regression

3-NN Average

Linear regression through 3-NN

Local weighting of data with kernel

Locally weighted quadratic kernel k=10

Comparison

connect the dots

3-NN linear regression

locally weighted regression (quadratic kernel width k=10)

Next class

• Statistical learning methods, Ch. 20