Non-Parametric Models



Review of last class:
Decision Tree Learning

» dealing with the overlearning problem: pruning
* ensemble learning
* boosting



Agenda

* Nearest neighbor models
Finding nearest neighbors with kd trees
Locality-sensitive hashing
Nonparametric regression



Non-Parametric Models

* doesn’'t mean that the model lacks parameters

« parameters are not known or fixed in advance

* make no assumptions about probability distributions
 instead, structure determined from the data



Comparison of Models

Non-Parametric
« data summarized by an

Parametric
« data summarized by a

fixed set of parameters

once learned, the
original data can be
discarded

good when data set is
relatively small — avoids
overfitting

best when correct
parameters are chosen!

unknown (or non-fixed)
set of parameters

must keep original data
to make predictions or
to update model

may be slower, but
generally more accurate



Instance-Based Learning
Decision Trees
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Another NPM approach:
Nearest neighbor (k-NN) models

given query X,
answer query by finding the kK examples
nearest to X,

classification:

- take plurality vote (majority for binary
classification) of neighbors

regression
- take mean or median of neighbor values
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Example: Earthquake
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Modeling the data with k-NN




Measuring “nearest”

 Minkowski distance calculated over each
attribute (or dimension) i

P\1/
Lp(Xj,xq)=(Eilxj’i—xq,l.| )

* p = 2: Euclidean distance — typically used if
dimensions measure similar properties (e.g.,
width, height, depth)

* p = 1. Manhattan distance — if dimensions
measure dissimilar properties (e.g., age, weight,
gender)



Recall a problem we faced before

« shape of the data looks very different depending on
the scale

* e.g., height vs. weight, with height in mm or km

 similarly, with k-NN, if we change the scale, we’'ll end
up with different neighbors



Simple solution

» simple solution is to normalize:

x'j,i = (xj,i - ﬂi)/ai



Example: Density estimation
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Density Estimation using k-NN

« # of neighbours impacts quality of estimation




Curse of dimensionality

« we want to find k = 10 nearest neighbors among
N=1,000,000 points of an n-dimensional space

* sounds easy, right?
« volume of neighborhood is k/N
« average side length | of neighborhood is (k/N)'"

n |

1 .00001
2 .003
3 .002
10 3

20 .06
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k-dimensional (kd) trees

» balanced binary tree with
arbitrary # of dimensions

 data structure that allows I
efficient lookup of
nearest neighbors (when
# of examples >> k)

* recursively divides data
into left and right
branches based on value
of dimension j




k-dimensional (kd) trees

D. A X-Splitting planes

o /\

Y-Splitting planes

VANEIVAN
< : & . X-Splitting planes @ @ @ @

not needed for leaf

« query value might be on left half of divide but have some of k
nearest neighbors on right half

« decide whether to inspect the right half based on distance of
best match found from dividing hyperplane



Locality-Sensitive Hashing (LSH)

* uses a combination of n random projections, built
from subsets of the bit-string representation of each
value

 value of each of the n projections stored in the
associated hash bucket



Locality-Sensitive Hashing (LSH)

* on search, the set of points from all hash buckets
corresponding to the query are combined together

« then measure distance from query value to each of
the returned values

* real-world example:
 data set of 13 million samples of 512 dimensions
* LSH only needs to examine a few thousand images
* 1000-fold improvement over kd trees!



Nonparametric Regression Models

* Let's see how different NPM strategies
fare on a regression problem



Piecewise linear regression
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3-NN Average
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Linear regression through 3-NN
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Local weighting of data with kernel
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Locally weighted quadratic kernel k=10
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Comparison
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(quadratic kernel width k=10)



Next class

» Statistical learning methods, Ch. 20



