Logical Agents

Recap of last class

- Principles of intelligence
- Agent architectures
 - SMPA architecture
 - subsumption architecture

Homework

- Design the control logic for a robot that has to drive around the Trottier building and collect empty soda cans
- Robot has:

Sensors	Effectors
Laser rangefinder	three-wheel base
Compass	2-joint arm
IR beam-break (between fingers)	gripper
IR proximity sensors (around base)	
Contact sensor (on hand)	

Herbert the soda-can-collecting robot

- Laser-based table-like object finder – drives robot to table
- If robot stationary, arm control reaches out for coke can
- Laser-based coke-can object finder moves arm toward soda can
- When can breaks infrared beam between fingers, grasp reflex is activated to pickup can

Herbert

- No planning
- No representation of the environment
- No communication between modules
- Herbert could respond quickly to changed circumstances:
 - e.g., new obstacle, or object approaching on a collision course.
 - e.g., place a coke can in front of Herbert he will pick it up. No expectations about where coke cans will be found.

Which way am I going?

- Without a map:
 - How can Herbert be sure to find its way to all parts of the environment?
 - How can Herbert be sure to bring cans back to "home?"
- <u>video</u>

Today's Agenda

 Using logical reasoning as the basis of a knowledge-based agent

Consider...

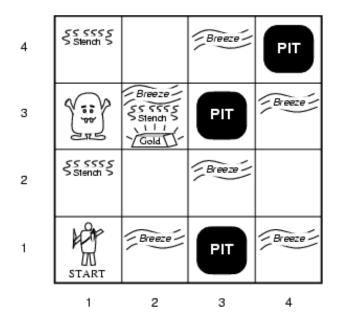
- Reflex agents find their way from Montreal to Ottawa by dumb luck
- Chess program calculates legal moves of its king, but does not know that no piece can be on 2 different squares at the same time
- Representations we have seen for problem-solving agents is limiting

Knowledge-Based Agents

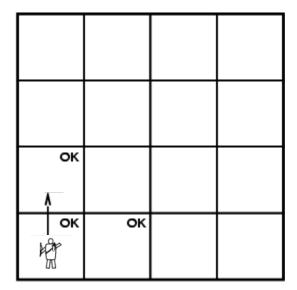
- combine general knowledge with current percepts to infer hidden aspects of current state
- Knowledge base (KB): set of sentences represented in a knowledge representation language; represents assertions about the world
- Inference rule: way to derive new sentences from existing ones
- we add new sentences to KB and query what is known by TELL and ASK operations

Wumpus World

- Environment
 - 4x4 grid of rooms
 - Agent starts in [1,1]
 - Gold and wumpus locations chosen randomly
 - Each square other than [1,1] can be a pit with P(0.2)
- Actuators
 - Left turn, Right turn, Forward
 - Agent dies if it enters a square containing a pit or live wumpus
 - Can climb out of the cave from square [1,1]
- Sensors:
 - Stench (S): in cells directly adjacent to wumpus (W)
 - Breeze (B): in cells directly adjacent to pit (P)



Inference at Play in the wumpus world



	P?		
B	ок С		
[ок А	ок	

P?		
вок	P?	
ок ан	ок —>А	

P?		
в ок А А	×	
ок А—	s_ок _>∰	

P ^{•?}			
в ок А А	×~		
ок А—	s ок _>	W	

P [₽] ?	, д		
в ок А А	الله (19	ок	
ј ок А	s ок —>А	W	

P	ĕ		
в ок А А	×,	ок —>А	
) ок А	s ок ->А	W	

That was easy

 Now how do we develop a logical agent to apply the same reasoning?

Propositional logic

negation: $\neg S$ is true iff S is false conjunction: $S_1 \land S_2$ is true iff S_1 is true and S_2 is true disjunction: $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true implication: $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true biconditional: $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Standard Logical Equivalences

 $\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$

Inference in Propositional Logic: Modus Ponens

 $\frac{\alpha \to \beta \ , \quad \alpha}{\beta}$

means that whenever $\alpha \to \beta$ and α are given, we can infer β

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j] Let $B_{i,j}$ be true if there is a breeze in [i, j]

"There is no pit in [1, 1]":

 $R_{1:} \neg P_{1,1}$

"a square is breezy if and only if there is an adjacent pit":

 $R_{2:} B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_{3:} B_{1,2} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$

percepts for first two squares visited:

R_{4:} ¬B_{1,1} R_{5:} B_{1,2}

Reasoning in Propositional Logic

$$\begin{array}{ll} \mathsf{R}_{2:} \; \mathsf{B}_{1,1} \leftrightarrow (\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1}) \\ \mathsf{R}_{6:} \; (\mathsf{B}_{1,1} \rightarrow (\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1})) \wedge ((\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1}) \rightarrow \mathsf{B}_{1,1}) & \text{bicond. elimin.} \\ (\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1}) \rightarrow \mathsf{B}_{1,1} & \text{and-elimination} \\ \neg \mathsf{B}_{1,1} \rightarrow \neg (\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1}) & \text{contrapositive equivalence} \\ \neg (\mathsf{P}_{1,2} \; \lor \; \mathsf{P}_{2,1}) & \text{Modus Ponens with } \mathsf{R}_4 \\ \neg \mathsf{P}_{1,2} \; \wedge \; \neg \mathsf{P}_{2,1} & \text{de Morgan's rule} \\ \mathsf{R}_{7:} \; \neg \mathsf{B}_{2,1} & \text{percept} \end{array}$$

What can you infer from R_7 ?

Resolution

- If you know:
 - it's raining or it's snowing (a v b)
- and you also know:
 - it's not raining (¬a)
- then you can conclude:
 - it's snowing (b)

Resolution

unit resolution inference:

if y_i and m are complementary literals, i.e., $y_i \land m = 0$

$$\frac{y_1 \vee \cdots \vee y_{i-1} \vee y_i \vee y_{i+1} \vee \cdots y_k, \quad m}{y_1 \vee \cdots \vee y_{i-1} \vee y_{i+1} \vee \cdots y_k}$$

Generalizes to full resolution rule:

 $\frac{y_1 \lor y_2, \neg y_1 \lor y_3}{y_2 \lor y_3}$

So continuing...

 $\begin{array}{c} \mathsf{R}_{11:} \, \mathsf{P}_{1,1} \, \, \mathsf{V} \, \, \mathsf{P}_{2,2} \, \mathsf{V} \, \, \mathsf{P}_{1,3} \\ \mathsf{P}_{1,3} \end{array}$

bicon. elim. of $R_3 \& MP$ with R_5 resolution with R_1 and R_9

Exercise

- New rule: The Wumpus cannot be in the same square as a pit
- Can you determine where the Wumpus is?
- What about a pit?

в ок А А		
ок А	SB OK →A	

First-Order Logic (FOL)

- Propositional logic: propositions (sentences)
- FOL adds quantification (∀,∃) and predicates

Predicates

- assume that Spot and Fido are dogs
- then the predicate, Dog(x)
 - returns TRUE if x is Spot or Fido

Unification

- Let *p* and *q* be sentences in FOL
- Let *U* be a **unifier**, i.e., some set of substitutions of values for variables
- *subst(U,x)* is the result of applying the substitutions of *U* to sentence *x*
- If subst(U,p) = subst(U,q) then UNIFY(p,q) = U
 - The unification of p and q is the result of applying U to both of them.

Example

Dog(Spot) Man(John)

UNIFY((Bites(Spot,y) ∧ Dog(x) ∧ Man(y)), (Bites(z,John) ∧ Dog(z) ∧ Man(John))) = {x/Spot; y/John; z/Spot}