
From Search to Games

January 2015

Readings for this class

•  Chapter 5-5.4

Learning Objectives

•  how to describe a game in AI terms
•  basic concepts of game-theory
•  how the minimax algorithm finds an

optimal move
•  benefits of alpha-beta pruning
•  simple strategies for position evaluation

functions

From problem formulation to game
defn

•  states: description of “world of interest”
•  initial state
•  successor function: generates set of

legal next states from available actions
•  goal test à
•  path cost à

terminal test: when is game over?

utility function: value of terminal states

Why search won’t work

•  search for sequence of moves that
leads to terminal state with positive
utility (winning state)

•  opponent might not be so cooperative!

Optimal Decisions in 2-player games

•  solution: find strategy that leads to
winning state regardless of what
opponent does

Minimax strategy for 2-player games

•  generate whole game tree down to terminal nodes
•  find value of each terminal state using utility function
•  repeat

•  determine utility of parent nodes from children
•  MIN chooses move that minimizes utility
•  MAX chooses move that maximizes utility

•  until we reach root
•  choose move that leads to “best” value

MiniMax algorithm

minmax(u) { // u is node to evaluate
 if u is a leaf return score of u;

 else if u is a min node
 for all children of u: v1, .. vn
 return min{ minmax(v1),..., minmax(vn)}
 else // u is a max node

 for all children of u: v1, .. vn
 return max{ minmax(v1),...,minmax(vn)}
}

NIM - player to take last stick loses

3 12 14 6 2 6 1 5 2

Improved search with alpha-beta pruning

X X X

MAX

MIN

stops evaluating a move when at least one possibility has been
found that proves the move to be worse than a previously
examined move

Alpha-Beta pseudocode
// from https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
// initial call is: alphabeta(origin, depth, -∞, +∞, TRUE)

function alphabeta(node, depth, α, β, maximizingPlayer)
 if depth = 0 or node is a terminal node
 return the heuristic value of node
 if maximizingPlayer
 v := -∞
 for each child of node
 v := max(v, alphabeta(child, depth - 1, α, β, FALSE))
 α := max(α, v)
 if β ≤ α break (* β cut-off *)
 return v
 else
 v := ∞
 for each child of node
 v := min(v, alphabeta(child, depth - 1, α, β, TRUE))
 β := min(β, v)
 if β ≤ α break (* α cut-off *)
 return v

Problem

•  usually impossible to explore entire state
space (e.g., chess search tree has approx.
35100 nodes)

•  infeasible to make optimal decision
•  solution: use heuristic position evaluators –

an estimate of utility of states based on
insight

Position Evaluators

•  game specific: have to be creative
•  what are the determining factors in the

goodness of a game state (utility)?
•  e.g., chess:

•  Sum of point value of pieces
•  Control of centre of board
•  Pawn structure
•  Defence of king
•  Mobility of pieces

Homework

•  Read before next class:
•  Ch. 2
•  Brooks, A Robust Layered Control System

for a Mobile Robot

