From Search to Games

R
THIS DAY IN HISTORY

Sports

1996
Deep Blue beats Kasparov at chess

Computers Solve Checkers—It's a
Draw

King me! Top computer scientist proves perfect play leads to draw, recounts battle for world
championship, gets kinged

By JR Minkel | July 19, 2007

Jonathan Schaeffer's quest for the perfect game of
checkers has ended. The 50-year-old computer
scientist from the University of Alberta in
Edmonton left human players in the dust more S S d
than a decade ago after a trial by fire against the Q -

greatest checkers champion in history. (— Sy

And now, after putting dozens of computers

to work night and day for 18 years—jump,
Jjump, jump—he says he has solved the game

_ e i .. _ © ISTOCKPHOTO/CHRISTOPHER O DRISCOLL
—king me!. "The starting position, assuming

no side makes a mistake, is a draw," he says.

January 2015

Heads-up limit Texas hold ‘em poker solved by University of
Alberta scientists

Poker algorithm another step toward artificial intelligence
By Aleksandra Sagan, CBC News Posted: Jan 08,2015 3:39 PMET | Last Updated: Jan 08, 2015 3:39 PM ET

Scientists at the University of Alberta have essentially solved heads-up limit hold 'em poker with an algorithm they hope will
lead to advances in artificial intelligence. (Shutterstock)

Readings for this class

* Chapter 5-5.4

Learning Objectives

* how to describe a game in Al terms
* basic concepts of game-theory

* how the minimax algorithm finds an
optimal move

* benefits of alpha-beta pruning

» simple strategies for position evaluation
functions

From problem formulation to game
defn

 states: description of “world of interest”
* Initial state

* successor function: generates set of
legal next states from available actions

* goal test - terminal test: when is game over?
» path cost —> utility function: value of terminal states

Why search won’t work

» search for sequence of moves that
leads to terminal state with positive
utility (winning state)

* opponent might not be so cooperative!

Optimal Decisions in 2-player games

» solution: find strategy that leads to
winning state regardless of what
opponent does

Minimax strategy for 2-player games

* generate whole game tree down to terminal nodes
 find value of each terminal state using utility function
e repeat
» determine utility of parent nodes from children
« MIN chooses move that minimizes utility
* MAX chooses move that maximizes utility
* until we reach root
* choose move that leads to “best” value

MiniMax algorithm

minmax(u) { // uis node to evaluate
If uis a leaf return score of u;
else if uis a min node
for all children of u: v1, .. vn
return min{ minmax(v1),..., minmax(vn)}
else // uis a max node
for all children of u: v1, .. vn
return max{ minmax(v1),...,minmax(vn)}

NIM - player to take last stick loses

|22|

/\
RN

|1||1|12I|11|

L1

Improved search with alpha-beta pruning
MAX

S xx

3 12 14 6 2 o6 1 S5 2

stops evaluating a move when at least one possibility has been
found that proves the move to be worse than a previously
examined move

Alpha-Beta pseudocode

// from
/[initial call is: alphabeta(origin, depth, -«, +« TRUE)

function alphabeta(node, depth, a, B, maximizingPlayer)
if depth = 0 or node is a terminal node
return the heuristic value of node
if maximizingPlayer
V = -
for each child of node
v := max(v, alphabeta(child, depth - 1, a, B, FALSE))
a = max(a, v)
if B <a break (* B cut-off *)

return v
else
V :: o0

for each child of node
v := min(v, alphabeta(child, depth - 1, a, 3, TRUE))
B := min(B, v)
if B<a break (* a cut-off *)

return v

Problem

 usually impossible to explore entire state
space (e.g., chess search tree has approx.
35190 nodes)

* Infeasible to make optimal decision

 solution: use heuristic position evaluators —
an estimate of utility of states based on
insight

Position Evaluators

* game specific: have to be creative

* what are the determining factors in the
goodness of a game state (utility)?

* e.g., chess:
* Sum of point value of pieces
« Control of centre of board
* Pawn structure
« Defence of king
 Mobility of pieces

Homework

 Read before next class:

* Ch. 2

* Brooks, A Robust Layered Control System
for a Mobile Robot

