
Machine Learning

Recap of last class

•  intro to machine learning concepts
•  categories of ML techniques:

•  clustering
•  data reduction
•  classification
•  regression

•  different types of learning:
•  supervised, reinforcement, and unsupervised

•  how to avoid overlearning

Today’s Agenda

•  Decision Tree Learning
•  Overfitting
•  Ensemble Learning
•  Boosting

Simple Supervised Learning:
Decision Trees

•  examples (training
set) described by:
•  input: the values of

attributes
•  output: the

classification
(yes/no)

•  can represent any
Boolean function

Inducing Decision Trees

•  option #1: build full look-up table
•  one path for each training example
•  going down path tests each attribute in turn
•  leaf assigned the classification of example

•  problems:
•  does not learn patterns
•  size is 2n—hardly the most concise description
•  other problems -- we’ll see this soon

Fixing the 2n problem

•  form more compact representation
•  look for redundancy of attributes
•  but not always possible, e.g.,

•  parity function
•  majority function

Recursive Decision Tree Induction

•  Case 1: if we have some +, some - examples, split
based on most important attribute
•  defined by information theoretic measures

•  Case 2: if remaining examples all + (or -) then done
•  can answer yes or no

•  Case 3: if there is some value for a particular
attribute but no examples available to classify it
•  use default value (majority classification) from node's parent

•  Case 4: if no attributes left, but we still have some +,
some -, examples, problem:
•  data noise, insufficient information, or nondeterministic

No Yes

Induced tree Original tree

•  induced decision tree looks nothing like the original
•  it’s much smaller, but is it wrong?

•  doesn't necessarily learn original function
•  ignores Raining and Reservation

•  what happens if restaurant is full, wait = 5 minutes,
hungry=no?

Overfitting

•  Problem: might be fitting noise rather than data
•  How to avoid overfitting in decision trees?

•  Pruning: avoid recursive split on irrelevant attributes
•  But how do we determine irrelevance?

Recursive Decision Tree Induction

•  Case 1: if we have some +, some - examples, split
based on most important attribute
•  defined by information theoretic measures

•  Case 2: if remaining examples all + (or -) then done
•  can answer yes or no

•  Case 3: if there is some value for a particular
attribute but no examples available to classify it
•  use default value (majority classification) from node's parent

•  Case 4: if no attributes left, but we still have some +,
some -, examples, problem:
•  data noise, insufficient information, or nondeterministic

Cross-validation

•  how well does the prediction fare on unseen data?
•  use a set of independent data to “validate” the tree
•  what happens if validation set gives errors?
•  Prune: replace subtree by a single (approximate)

decision node (“most popular decision”)

color?

T F
red green

(2) (1)
F

Validation Set Results
color decision
green F √
green T x
red F x

TrainingSet Results
color decision
red T √
green F √
green F √

Statistical Significance Test

•  take a sample of size v, consisting of p positive and n negative examples
•  divide the sample into subsets based on classification of the attribute

•  for each subset, let pi and ni be the number of positive and negative

examples

color decision
red T
red F

color decision
green F
green F
green T
green F

pi=1, ni =3 pi=1, ni =1

Statistical Significance Test

•  Calculate expected # of positive and negative
examples, assuming attribute is irrelevant

p̂i = p×
pi + ni
p+ n

n̂i = n×
pi + ni
p+ n

color decision
red T
red F

color decision
green F
green F
green T
green F

pi=1, ni =3 pi=1, ni =1

p=2, n =4

Statistical Significance Test

•  now calculate total deviation:

•  D measures how much the split deviates from what
we would expect from random data

•  if attribute is “irrelevant”, i.e., the total deviation from
the null hypothesis is statistically insignificant,can
prune it from tree

•  is D small in this case?

D =
(pi − p̂i)

2

p̂i
+
(ni − n̂i)

2

n̂ii
∑

Real-world decision tree algorithms

•  handle continuous data (e.g., temperature)
•  avoid overfitting the data
•  deal with:

•  weighted attribute costs
•  data with missing attribute values

•  perform pruning

Example: Golf Decision

Outlook Temperature Humidity Windy Decision
sunny 85 85 false Don't Play
overcast 83 78 false Play
rain 70 96 false Play
rain 68 80 false Play
rain 65 70 true Don't Play
overcast 64 65 true Play
sunny 72 95 false Don't Play
sunny 69 70 false Play
rain 75 80 false Play
sunny 75 70 true Play
overcast 72 90 true Play
overcast 81 75 false Play
rain 71 80 true Don't Play

Approach

•  start by considering binary variables
(e.g., outlook, windy)

•  when they no longer help provide
unambiguous classification to all
remaining examples:
•  consider continuous variables
•  choose a useful split point in their range

(e.g. temperature > 83)

C4.5 Decision Tree Output

Decision Tree:
outlook = overcast: Play (4.0)
outlook = sunny:

 | humidity <= 75 : Play (2.0)
 | humidity > 75 : Don't Play (3.0)

outlook = rain:
 | windy = true: Don't Play (2.0)
 | windy = false: Play (3.0)

Evaluation on training data (14 items):
 Before Pruning After Pruning
 ---------------- ---------------------------
 Size Errors Size Errors Estimate
 8 0(0.0%) 8 0(0.0%) (38.5%) <<

Sammut: Learning to Fly

•  take off and fly to
altitude of 2000 feet

•  level out, fly to distance
of 32000 feet

•  turn right to 3300

•  at 42,000 feet, turn
back to runway

•  line up on the runway
•  descend on the

runway, keeping in line
•  land

Issues Faced

•  pruning
•  branching
•  dealing with real-world issues

•  noise in data
•  causality
•  delay between sensing and reaction
•  different strategies accomplish same goal

Ensemble Learning

•  We’ve seen how to learn to make predictions
from a single hypothesis, e.g., decision trees

•  What if we generated an ensemble of
hypotheses and used their combination to
make predictions?

•  If errors made by each hypothesis are
independent, the probability that a majority of
them will make the same error is very small

Three linear hypotheses in ensemble

•  all three hypotheses need to agree on “positive”
classification

•  allows for non-linear hypothesis space

Boosting

•  incrementally build an ensemble by training each new
model instance to emphasize the training instances
that previous models mis-classified

Boosting

•  Weighted training set: each example has a weight
wij≥0 representing its importance during learning

•  Start learning:
•  Use wij=1 for all examples in training set
⇒ hypothesis h1

•  Next iteration:
•  Increase wij for all misclassified examples in h1

•  Decrease wi for others; learn again
⇒hypothesis h2

 …
•  Repeat until M hypotheses generated

How Boosting Works

height of rectangle
indicates weight

size of decision tree
indicates weight of
hypothesis in ensemble

