
Machine Learning 



Recap of last class 

•  intro to machine learning concepts 
•  categories of ML techniques: 

•  clustering 
•  data reduction 
•  classification 
•  regression 

•  different types of learning:  
•  supervised, reinforcement, and unsupervised  

•  how to avoid overlearning 



Today’s Agenda 

•  Decision Tree Learning 
•  Overfitting 
•  Ensemble Learning 
•  Boosting 



Simple Supervised Learning: 
Decision Trees 

•  examples (training 
set) described by: 
•  input: the values of 

attributes  
•  output: the 

classification  
(yes/no)  

•  can represent any 
Boolean function 





Inducing Decision Trees 

•  option #1: build full look-up table 
•  one path for each training example 
•  going down path tests each attribute in turn 
•  leaf assigned the classification of example 

•  problems:  
•  does not learn patterns 
•  size is 2n—hardly the most concise description 
•  other problems -- we’ll see this soon  



Fixing the 2n problem 

•  form more compact representation 
•  look for redundancy of attributes 
•  but not always possible, e.g., 

•  parity function 
•  majority function 



Recursive Decision Tree Induction 

•  Case 1: if we have some +, some - examples, split 
based on most important attribute 
•  defined by information theoretic measures 

•  Case 2: if remaining examples all + (or -) then done 
•  can answer yes or no 

•  Case 3: if there is some value for a particular 
attribute but no examples available to classify it 
•  use default value (majority classification) from node's parent  

•  Case 4: if no attributes left, but we still have some +, 
some -, examples, problem:  
•  data noise, insufficient information, or nondeterministic 









No Yes 





Induced tree Original tree

•  induced decision tree looks nothing like the original 
•  it’s much smaller, but is it wrong? 

•  doesn't necessarily learn original function 
•  ignores Raining and Reservation 

•  what happens if restaurant is full, wait = 5 minutes, 
hungry=no? 



Overfitting 

•  Problem: might be fitting noise rather than data 
•  How to avoid overfitting in decision trees? 

•  Pruning: avoid recursive split on irrelevant attributes 
•  But how do we determine irrelevance? 



Recursive Decision Tree Induction 

•  Case 1: if we have some +, some - examples, split 
based on most important attribute 
•  defined by information theoretic measures 

•  Case 2: if remaining examples all + (or -) then done 
•  can answer yes or no 

•  Case 3: if there is some value for a particular 
attribute but no examples available to classify it 
•  use default value (majority classification) from node's parent  

•  Case 4: if no attributes left, but we still have some +, 
some -, examples, problem:  
•  data noise, insufficient information, or nondeterministic 



Cross-validation 

•  how well does the prediction fare on unseen data? 
•  use a set of independent data to “validate” the tree 
•  what happens if validation set gives errors? 
•  Prune: replace subtree by a single (approximate) 

decision node (“most popular decision”) 

color? 

T F 
red green 

(2) (1) 
F 

Validation Set Results 
color  decision   
green  F  √ 
green  T  x 
red  F  x 

TrainingSet Results 
color  decision   
red  T  √ 
green  F  √ 
green  F  √ 



Statistical Significance Test 

•  take a sample of size v, consisting of p positive and n negative examples 
•  divide the sample into subsets based on classification of the attribute 

 

 
•  for each subset, let pi and ni  be the number of positive and negative 

examples 

color  decision   
red  T   
red  F   

color  decision   
green  F 
green  F 
green  T 
green  F 

pi=1, ni =3 pi=1, ni =1 



Statistical Significance Test 

•  Calculate expected # of positive and negative 
examples, assuming attribute is irrelevant 

p̂i = p×
pi + ni
p+ n

n̂i = n×
pi + ni
p+ n

color  decision   
red  T   
red  F   

color  decision   
green  F 
green  F 
green  T 
green  F 

pi=1, ni =3 pi=1, ni =1 

p=2, n =4 



Statistical Significance Test 

•  now calculate total deviation: 

•  D measures how much the split deviates from what 
we would expect from random data 

•  if attribute is “irrelevant”, i.e., the total deviation from 
the null hypothesis is statistically insignificant,can 
prune it from tree 

•  is D small in this case? 

D =
(pi − p̂i )

2

p̂i
+
(ni − n̂i )

2

n̂ii
∑



Real-world decision tree algorithms 

•  handle continuous data (e.g., temperature) 
•  avoid overfitting the data  
•  deal with: 

•  weighted attribute costs 
•  data with missing attribute values 

•  perform pruning 



Example: Golf Decision 

Outlook    Temperature    Humidity     Windy      Decision 
sunny   85  85  false  Don't Play 
overcast   83  78  false  Play 
rain   70  96  false  Play 
rain    68  80  false  Play 
rain    65  70  true  Don't Play 
overcast    64  65  true  Play 
sunny    72  95  false  Don't Play 
sunny    69  70  false  Play 
rain    75  80  false  Play 
sunny    75  70  true  Play 
overcast   72  90  true  Play 
overcast    81  75  false  Play 
rain   71  80  true  Don't Play 



Approach 

•  start by considering binary variables 
(e.g., outlook, windy) 

•  when they no longer help provide 
unambiguous classification to all 
remaining examples: 
•  consider continuous variables 
•  choose a useful split point in their range 

(e.g. temperature > 83) 



C4.5 Decision Tree Output 

Decision Tree: 
outlook = overcast: Play (4.0) 
outlook = sunny: 

 |   humidity <= 75 : Play (2.0) 
 |   humidity > 75 : Don't Play (3.0) 

outlook = rain: 
 |   windy = true: Don't Play (2.0) 
 |   windy = false: Play (3.0) 

 
Evaluation on training data (14 items): 
         Before Pruning           After Pruning 
        ----------------   --------------------------- 
        Size      Errors   Size      Errors   Estimate 
           8    0( 0.0%)      8    0( 0.0%)    (38.5%)   << 
 



Sammut: Learning to Fly 

•  take off and fly to 
altitude of 2000 feet 

•  level out, fly to distance 
of 32000 feet 

•  turn right to 3300 

•  at 42,000 feet, turn 
back to runway 

•  line up on the runway 
•  descend on the 

runway, keeping in line 
•  land 



Issues Faced 

•  pruning 
•  branching 
•  dealing with real-world issues 

•  noise in data 
•  causality 
•  delay between sensing and reaction 
•  different strategies accomplish same goal 



Ensemble Learning 

•  We’ve seen how to learn to make predictions 
from a single hypothesis, e.g., decision trees 

•  What if we generated an ensemble of 
hypotheses and used their combination to 
make predictions? 

•  If errors made by each hypothesis are 
independent, the probability that a majority of 
them will make the same error is very small  



Three linear hypotheses in ensemble 

•  all three hypotheses need to agree on “positive” 
classification 

•  allows for non-linear hypothesis space 



Boosting  

•  incrementally build an ensemble by training each new 
model instance to emphasize the training instances 
that previous models mis-classified 



Boosting  

•  Weighted training set: each example has a weight 
wij≥0 representing its importance during learning 

•  Start learning: 
•  Use wij=1 for all examples in training set  
⇒ hypothesis h1 

•  Next iteration: 
•  Increase wij for all misclassified examples in h1  

•  Decrease wi for others; learn again  
⇒hypothesis h2 

 … 
•  Repeat until M hypotheses generated 



How Boosting Works 

height of rectangle 
indicates weight 

size of decision tree 
indicates weight of 
hypothesis in ensemble 


