Decision-Making

Non-recap of last class

• We'll return to planning next week...

Agenda

- Simple and complex decision-making
- Markov Decision Problems
- Concept of Utility
- Value and policy iteration

Expected Utility

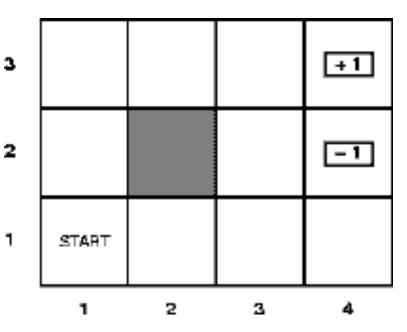
• $EU(a|e) = \sum_{s'} P(\text{RESULT}(a) = s' | a, e) U(s')$

- Maximum Expected Utility
 - rational agent should choose action that maximizes expected utility:

$$a^* = \operatorname*{argmax}_{a} EU(a \mid \mathbf{e})$$

Making Complex Decisions

- from START, agent executes a sequence of actions (north, south, east, west), terminating when it reaches one of the terminal states with a reward of 2 +1 or -1
- all other states have reward of -0.04 (think of this as a path cost)

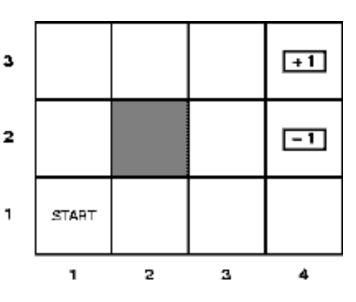


Deterministic case

- if we know where we started and what happens when we move in any direction:
 - can build entire state tree
 - use classical search techniques to find optimal solution

Non-deterministic case

- 0.8 probability that each action achieves intended effect
- transition model : P(s' | s,a) or equivalently, T(s,a,s')
 refers to probability of reaching state s' if action a performed in state s
- can't search!

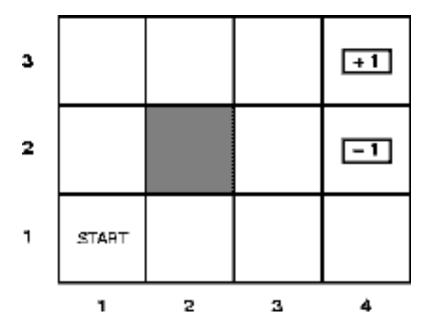


Conditional Plan

need a solution more like this:

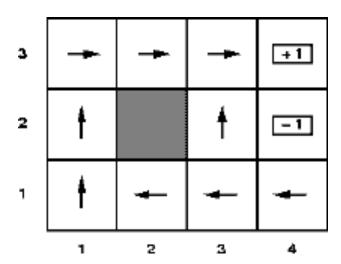
North if (2,1) then West else North

. . .



Markov decision problems (MDP)

- sequential decision problem
- environment is fully observable
- transition probabilities depend only on current state (memoriless)
- defined by:
 - initial state: S₀
 - transition model: T(s,a,s') or P(s' |s,a)
 - reward function: R(s)



- $\pi(s)$: what should the agent do for any state *s* that it might reach?
- π*(s): optimal policy, yields highest expected utility

Utility Function in an MDP

- how good is a particular state?
- because the decision problem is sequential, the utility function depends on a sequence of states

"the utility of a state is the expected utility of the state sequences that might follow it"

Utility of state sequence U_h

- for additive rewards $U_h([s_0, s_1, \dots, s_n]) = R(s_0) + U_h([s_1, \dots, s_n]) = \Sigma R(s_i)$
- unbounded world problem: what if there are positive rewards at non-terminal states?

Discounting

- concept of "discounted rewards":
 - rewards are less valuable the longer we wait for them

•
$$U_h([s_0, s_1, ..., s_n]) = R(s_0) + \gamma U_h([s_1, ..., s_n])$$

= $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... = \Sigma \gamma^j R(s_j)$

where γ is the discount factor (< 1) for the wait (γ =1 degenerates to the additive case)

• ensures that utility of an infinite sequence is *finite*

Utilities of states

 the utility of a state is the expected utility of the state sequences that might follow it

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid \pi, s_{0} = s\right].$$

• therefore, the true utility of a state $U(s) = U^{\pi^*}(s)$

Optimal Policy

- choose action that achieves maximum expected utility of subsequent state
- hence, the optimal policy is:

$$\pi^* = \arg\max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \mid \pi\right].$$

But how to solve these series?

• observation:

- direct relationship between utility of a state and its neighbours:
- Bellman equation:
 - utility of a state = immediate reward for that state...

$$U(s) = R(s) +$$

But how to solve these series?

• observation:

- direct relationship between utility of a state and its neighbours:
- Bellman equation:
 - utility of a state = immediate reward for that state...
 - plus expected discounted utility of the next state...

$$U(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, a) U(s')$$

But how to solve these series?

• observation:

- direct relationship between utility of a state and its neighbours:
- Bellman equation:
 - utility of a state = immediate reward for that state...
 - plus expected discounted utility of the next state...
 - following the optimal policy

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U(s')$$

Value Iteration

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_i(s')$$

04	04	04	+1
04		04	-1
04	04	04	04

Example: Value Iteration applied

.812	.868	.912	+1
.762		.650	-1
.705	.655	.611	.388

Policy Iteration

- the policy evaluation step can be solved directly in O(n³) using linear algebra techniques
- but we can approximate this by a simplified Bellman update (modified policy iteration):

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) U_i(s')$$

Policy Iteration Algorithm

pick an initial policy π_0 (randomly) then iterate:

policy evaluation:

calculate utility of each state, given π_i : $U_i = U^{\pi_i}(s)$ $U_{i+1}(s) = R(s) + \gamma \sum P(s' \mid s, \pi_i(s))U_i(s')$

simpler than value iteration because actions are fixed!

policy improvement:

calculate a new MEU policy π_{i+1} using one-step lookahead based on U_i

until no change in policy

Policy Iteration Algorithm

```
pick an initial policy \pi_o (randomly)
repeat
U \leftarrow POLICY-EVALUATION (\pi, U, mdp)
unchanged \leftarrow TRUE
for each state s in S do
if max<sub>a</sub> \sum P(s' | s,a)U[s' ] > \sum P(s' | s,\pi[s])U[s' ])
\pi[s] \leftarrow \arg \max_a \sum P(s' | s,\pi[s]) U[s' ]
unchanged \leftarrow FALSE
until unchanged
```

Recap

- Basics of decision-making
- Markov Decision Problems
- Concept of Utility
- Value and policy iteration