
Decision-Making 



Non-recap of last class 

•  We’ll return to planning next week…  
 



Agenda 

•  Simple and complex decision-making 
•  Markov Decision Problems 
•  Concept of Utility 
•  Value and policy iteration 



Expected Utility 

•  EU(a|e) = Σs’ P(RESULT(a) = s’ | a, e) U(s’) 

•  Maximum Expected Utility 
•  rational agent should choose action that maximizes 

expected utility: 
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Making Complex Decisions  

•  from START, agent executes a 
sequence of actions (north, 
south, east, west), terminating 
when it reaches one of the 
terminal states with a reward of 
+1 or -1 

•  all other states have reward of 
-0.04 (think of this as a path 
cost) 



Deterministic case 

•  if we know where we started and what 
happens when we move in any 
direction: 
•  can build entire state tree 
•  use classical search techniques to find 

optimal solution 



Non-deterministic case  

•  0.8 probability that each 
action achieves intended 
effect  

•  transition model : P(s’ | s,a) 
or equivalently, T(s,a,s’) 
refers to probability of 
reaching state s’ if action a 
performed in state s 

•  can't search! 



Conditional Plan 

•  need a solution more like this: 

North 
if (2,1) then West 
else North 
… 



Markov decision problems (MDP) 

•  sequential decision problem 
•  environment is fully observable 
•  transition probabilities depend only on current 

state (memoriless) 
•  defined by: 

•  initial state: S0 
•  transition model: T(s,a,s’) or P(s’ |s,a) 
•  reward function: R(s) 

 



Policy solution to MDP 

•  π(s): what should the agent do for any 
state s that it might reach? 

•  π*(s): optimal policy, yields highest 
expected utility 

 



Utility Function in an MDP 

•  how good is a particular state? 
•  because the decision problem is 

sequential, the utility function depends on a 
sequence of states 

 
“the utility of a state is the expected utility of 

the state sequences that might follow it” 



Utility of state sequence Uh 

•  for additive rewards 
Uh([s0,s1,…,sn]) = R(s0) + Uh([s1,…,sn]) = ΣR(si) 

 
•  unbounded world problem: what if there are 

positive rewards at non-terminal states? 
 



Discounting 

•  concept of “discounted rewards”: 
•  rewards are less valuable the longer we wait for them 

•  Uh([s0,s1,…,sn]) = R(s0) + γUh([s1,…,sn]) 
  = R(s0) +γR(s1) + γ2R(s2) + …= ΣγiR(si) 

 
where γ is the discount factor (< 1) for the wait  
(γ=1 degenerates to the additive case) 

•  ensures that utility of an infinite sequence is finite 



Utilities of states 

•  the utility of a state is the expected utility of the state 
sequences that might follow it 

•  therefore, the true utility of a state U(s) = Uπ*(s) 
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Optimal Policy 

•  choose action that achieves maximum expected utility of 
subsequent state 

•  hence, the optimal policy is: 
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But how to solve these series? 

•  observation: 
•  direct relationship between utility of a state and its 

neighbours: 
•  Bellman equation: 

•  utility of a state = immediate reward for that state… 

U(s) = R(s)+



But how to solve these series? 

•  observation: 
•  direct relationship between utility of a state and its 

neighbours: 
•  Bellman equation: 

•  utility of a state = immediate reward for that state… 
•  plus expected discounted utility of the next state… 

U(s) = R(s)+γ P(s ' | s,a)U( !s )
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But how to solve these series? 

•  observation: 
•  direct relationship between utility of a state and its 

neighbours: 
•  Bellman equation: 

•  utility of a state = immediate reward for that state… 
•  plus expected discounted utility of the next state… 
•  following the optimal policy 
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Value Iteration 
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Example: Value Iteration applied 
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Policy Iteration 

•  the policy evaluation step can be solved 
directly in O(n3)  using linear algebra 
techniques 

•  but we can approximate this by a simplified 
Bellman update (modified policy iteration): 
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Policy Iteration Algorithm 

pick an initial policy π0 (randomly) 
then iterate: 

policy evaluation:  
calculate utility of each state, given πi: 

 
simpler than value iteration because actions are fixed! 

policy improvement:  
calculate a new MEU policy πi+1 using one-step look-
ahead based on Ui 

until no change in policy 
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Policy Iteration Algorithm 

pick an initial policy π0 (randomly) 
repeat 

U ← POLICY-EVALUATION (π, U, mdp) 
unchanged ←TRUE 
for each state s in S do 

if maxa ∑ P(s’| s,a)U[s’] > ∑ P(s’ | s,π[s])U[s’]) 
 π[s] ← arg maxa ∑ P(s’ | s,π[s]) U[s’]  

   unchanged ←FALSE 
until unchanged 

 



Recap 

•  Basics of decision-making 
•  Markov Decision Problems 
•  Concept of Utility 
•  Value and policy iteration 


