Decision-Making

Non-recap of last class

« We’'ll return to planning next week...

Agenda

» Simple and complex decision-making
* Markov Decision Problems

» Concept of Utility

* Value and policy iteration

Expected Utility

 EU(ale) =Z, P(RESULT(a)=s"| a, e) U(s)

 Maximum Expected Utility

* rational agent should choose action that maximizes
expected utility:

a*=argmax EU(a|e)

Making Complex Decisions

from START, agent executes a
sequence of actions (north,
south, east, west), terminating
when it reaches one of the
terminal states with a reward of 2
+1 or -1

all other states have reward of
-0.04 (think of this as a path
cost)

3

1

START

+1

Deterministic case

 if we know where we started and what
happens when we move in any
direction:
« can build entire state tree

* use classical search techniques to find
optimal solution

Non-deterministic case

* 0.8 probability that each
action achieves intended
effect

* transition model : P(s’| s,a)
or equivalently, T(s,a,s’)
refers to probability of
reaching state s if action a
performed in state s

 can't search!

3

2

1

START

Conditional Plan

 need a solution more like this:

North
if (2,1) then West
else North

START

+1

Markov decision problems (MDP)

* sequential decision problem
« environment is fully observable

» transition probabilities depend only on current
state (memoriless)

 defined by:
- initial state: S,
* transition model: 7(s,a,s’) or P(s’|s,a)
« reward function: R(s)

Policy solution to MDP .| {

1 ' e e

 17(S): what should the agent do for any
state s that it might reach?

» 11*(s): optimal policy, yields highest
expected utility

Utility Function in an MDP

* how good is a particular state?

* because the decision problem is
sequential, the utility function depends on a

sequence of states

“the utility of a state is the expected utility of
the state sequences that might follow it”

Utility of state sequence U,

* for additive rewards
Un([S0:S1,---Spl) = R(Sg) + Uy([S4,...,S,]) = ZR(SI)

* unbounded world problem: what if there are
positive rewards at non-terminal states?

Discounting

» concept of “discounted rewards™:
« rewards are less valuable the longer we wait for them

o Up(l50S1--+54) = R(So) + 1y([S1, S,
= R(sy) +1R(s,) + PR(S) + .= ZyR(s)

where yis the discount factor (< 1) for the wait
(y=1 degenerates to the additive case)

 ensures that utility of an infinite sequence is finite

Utilities of states

 the utility of a state is the expected utility of the state
sequences that might follow it

U™ (s) = E[EyR(s)‘n S S]

« therefore, the true utility of a state U(s) = U™ (s)

Optimal Policy

* choose action that achieves maximum expected utility of
subsequent state

* hence, the optimal policy is:

w¢=argmax E [i y'R(s,)| n].

But how to solve these series?

 observation:

» direct relationship between utility of a state and its
neighbours:

* Bellman equation:
- utility of a state = immediate reward for that state...

U(s)=R(s)+

But how to solve these series?

 observation:

» direct relationship between utility of a state and its
neighbours:

* Bellman equation:

- utility of a state = immediate reward for that state...
 plus expected discounted utility of the next state...

U(s)=R(s)+y EP(S' ls,a)U(s")

But how to solve these series?

 observation:

» direct relationship between utility of a state and its
neighbours:

* Bellman equation:

- utility of a state = immediate reward for that state...
 plus expected discounted utility of the next state...
* following the optimal policy

U(s) = R(s)+¥ maXEP(S'| s,a)U(s")

Value Iteration

U,.1(5) <= R(s)+ ymax 3 P(s'| s, aU, (s

-04 | -04 |-.04

04 | -04 | -04 | -04

Example: Value lteration applied

812 | 868 |.912
7162 650
705 | 655 | 611 | 388

Policy Iteration

* the policy evaluation step can be solved
directly in O(n3) using linear algebra
techniques

* but we can approximate this by a simplified
Bellman update (modified policy iteration):

Uyi(5) <= R(s)+ 1 3, PUs'| 5, 7,(5)WU, (5

Policy lteration Algorithm

pick an initial policy m, (randomly)
then iterate:

policy evaluation:
calculate utility of each state, given . U, =U" (s)
U (s)=R(s)+y Y P(s'ls,,(s)U,(s)
simpler than value iteration because actions are fixed!
policy improvement:

calculate a new MEU policy ., using one-step look-
ahead based on U,

until no change in policy

Policy lteration Algorithm

pick an initial policy m, (randomly)
repeat
U < POLICY-EVALUATION (rr, U, mdp)
unchanged < TRUE
for each state sin S do
if max, > P(s"| s,a)U[s']> > P(s’ | s,im[s])U[s])
m[s] < arg max, Y P(s” | s,m[s]) U[s’]
unchanged <—FALSE
until unchanged

Recap

Basics of decision-making
Markov Decision Problems
Concept of Utility

Value and policy iteration

