
Decision-Making

Non-recap of last class

•  We’ll return to planning next week…

Agenda

•  Simple and complex decision-making
•  Markov Decision Problems
•  Concept of Utility
•  Value and policy iteration

Expected Utility

•  EU(a|e) = Σs’ P(RESULT(a) = s’ | a, e) U(s’)

•  Maximum Expected Utility
•  rational agent should choose action that maximizes

expected utility:

)|(argmax* eaEUa
a

=

Making Complex Decisions

•  from START, agent executes a
sequence of actions (north,
south, east, west), terminating
when it reaches one of the
terminal states with a reward of
+1 or -1

•  all other states have reward of
-0.04 (think of this as a path
cost)

Deterministic case

•  if we know where we started and what
happens when we move in any
direction:
•  can build entire state tree
•  use classical search techniques to find

optimal solution

Non-deterministic case

•  0.8 probability that each
action achieves intended
effect

•  transition model : P(s’ | s,a)
or equivalently, T(s,a,s’)
refers to probability of
reaching state s’ if action a
performed in state s

•  can't search!

Conditional Plan

•  need a solution more like this:

North
if (2,1) then West
else North
…

Markov decision problems (MDP)

•  sequential decision problem
•  environment is fully observable
•  transition probabilities depend only on current

state (memoriless)
•  defined by:

•  initial state: S0
•  transition model: T(s,a,s’) or P(s’ |s,a)
•  reward function: R(s)

Policy solution to MDP

•  π(s): what should the agent do for any
state s that it might reach?

•  π*(s): optimal policy, yields highest
expected utility

Utility Function in an MDP

•  how good is a particular state?
•  because the decision problem is

sequential, the utility function depends on a
sequence of states

“the utility of a state is the expected utility of

the state sequences that might follow it”

Utility of state sequence Uh

•  for additive rewards
Uh([s0,s1,…,sn]) = R(s0) + Uh([s1,…,sn]) = ΣR(si)

•  unbounded world problem: what if there are

positive rewards at non-terminal states?

Discounting

•  concept of “discounted rewards”:
•  rewards are less valuable the longer we wait for them

•  Uh([s0,s1,…,sn]) = R(s0) + γUh([s1,…,sn])
 = R(s0) +γR(s1) + γ2R(s2) + …= ΣγiR(si)

where γ is the discount factor (< 1) for the wait
(γ=1 degenerates to the additive case)

•  ensures that utility of an infinite sequence is finite

Utilities of states

•  the utility of a state is the expected utility of the state
sequences that might follow it

•  therefore, the true utility of a state U(s) = Uπ*(s)

€

U π (s) =E γ tR(st)
t= 0

∞

∑ π , s0=s[].

Optimal Policy

•  choose action that achieves maximum expected utility of
subsequent state

•  hence, the optimal policy is:

€

π* = argmax
π

E γ tR(st)
t= 0

∞

∑ π[].

But how to solve these series?

•  observation:
•  direct relationship between utility of a state and its

neighbours:
•  Bellman equation:

•  utility of a state = immediate reward for that state…

U(s) = R(s)+

But how to solve these series?

•  observation:
•  direct relationship between utility of a state and its

neighbours:
•  Bellman equation:

•  utility of a state = immediate reward for that state…
•  plus expected discounted utility of the next state…

U(s) = R(s)+γ P(s ' | s,a)U(!s)
!s
∑

But how to solve these series?

•  observation:
•  direct relationship between utility of a state and its

neighbours:
•  Bellman equation:

•  utility of a state = immediate reward for that state…
•  plus expected discounted utility of the next state…
•  following the optimal policy

∑
ʹ′

ʹ′+=
sa

sUassPsRsU)(),|'(max)()(γ

Value Iteration

-.04 -.04

-.04

-.04

-.04

-.04

-.04

-.04 -.04

+1

-1

∑
ʹ′

+ ʹ′+←
s

iai sUassPsRsU)(),|'(max)()(1 γ

Example: Value Iteration applied

.868 .912

.650

.655

.762

.611

.812

.705 .388

+1

-1

Policy Iteration

•  the policy evaluation step can be solved
directly in O(n3) using linear algebra
techniques

•  but we can approximate this by a simplified
Bellman update (modified policy iteration):

∑
ʹ′

+ ʹ′+←
s

iii sUsssPsRsU)())(,|'()()(1 πγ

Policy Iteration Algorithm

pick an initial policy π0 (randomly)
then iterate:

policy evaluation:
calculate utility of each state, given πi:

simpler than value iteration because actions are fixed!

policy improvement:
calculate a new MEU policy πi+1 using one-step look-
ahead based on Ui

until no change in policy

)(sUU i
i

π=
Ui+1(s) = R(s)+γ P(s ' | s,π i (s))Ui (!s)

!s
∑

Policy Iteration Algorithm

pick an initial policy π0 (randomly)
repeat

U ← POLICY-EVALUATION (π, U, mdp)
unchanged ←TRUE
for each state s in S do

if maxa ∑ P(s’| s,a)U[s’] > ∑ P(s’ | s,π[s])U[s’])
 π[s] ← arg maxa ∑ P(s’ | s,π[s]) U[s’]

 unchanged ←FALSE
until unchanged

Recap

•  Basics of decision-making
•  Markov Decision Problems
•  Concept of Utility
•  Value and policy iteration

