Lecture on Support Vector Machines (SVM)

Stéphane Pelletier

Department of Electrical and Computer Engineering McGill University, Montréal, Canada stephane.pelletier@mail.mcgill.ca

March 29, 2007

Stéphane Pelletier Lecture on Support Vector Machines (SVM)

Overview of SVMs

- Set of related *supervised learning* methods used for *classification* and *regression*.
- Based on simple ideas and thus provide a clear intuition of what learning from examples is about.
- Are not affected by local minima.
- Do not suffer from the *curse of dimensionality*.
- Can lead to high performances in practical applications.

• (1) • (

Overview of SVMs (cont.)

- Simple enough to be analyzed mathematically (unlike neural net).
- Correspond to a *linear* method in a high-dimensional *feature space* nonlinearly related to input space.
- But! Does not involve computation in this high-dimensional feature space.
- By using *kernels*, all computations can be performed in input space.

Hyperplane concept

- A *hyperplane* is a higher-dimensional generalization of a plane in 3D.
- It has *codimension* 1, i.e., it has dimension *n* − 1 in an *n*-dimensional space,
- A hyperplane divides...

a space in two half-spaces a plane in two half-planes a line in two rays

Stéphane Pelletier Lecture on Support Vector Machines (SVM)

Mathematical representation of a hyperplane

• A hyperplane in an *n*-dimensional space is defined by

$$x_0, \ldots, x_{n-1} \mid w_0 x_0 + \ldots + w_{n-1} x_{n-1} + b = 0,$$
 (1)

where $w_0 \dots w_{n-1}$ and *b* are scalar coefficients.

Using vector notation, one can rewrite Equation 1 as

$$\mathbf{x} \mid \mathbf{w}^T \mathbf{x} + b = 0, \tag{2}$$

< 同 > < 回 > < 回 > <

where
$$\mathbf{w} = [w_0 \ w_1 \ \dots \ w_{n-1}]^T$$
 and $\mathbf{x} = [x_0 \ x_1 \ \dots \ x_{n-1}]^T$.

Hyperplane examples

- w is a vector perpendicular to the hyperplane.
- when $||\mathbf{w}|| = 1$, *b* is the distance between the hyperplane and the origin.
- Is the representation of a hyperplane unique?

The two half-spaces defined by a hyperplane are

$$\mathbf{w}^T \mathbf{x} + b \leq 0$$
 and $\mathbf{w}^T \mathbf{x} + b \geq 0$.

These can be used to define a function *f* : ℜⁿ → {±1} for classifying a vector x ∈ ℜⁿ into one of two classes, namely -1 or 1:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{x} + b).$$

• The hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ is called the *decision boundary*.

Hyperplane classifiers (cont.)

<<p>・

Learning the classification function parameters

- Given w and b, we know we can classify any point x.
- Given a set of points, can we find a hyperplane (i.e. w and *b*) that correctly classifies them?
- Motivation: learning from examples.

Pattern recognition from examples

• Suppose we have a set of *p* classified patterns

$$(\mathbf{x}_i, y_i), i \in \{0, 1, \dots, p-1\},\$$

where \mathbf{x}_i is a *n*-dimensional pattern (vector) and $y_i \in \{\pm 1\}$ is its class label.

- We would like to find a function *f* : ℜⁿ → {±1} that correctly classifies all patterns.
- This implies finding a hyperplane (i.e. w and b) such that

$$\mathbf{w}^T \mathbf{x}_i + b \ge 0 \quad \text{if } y_i = +1, \\ \mathbf{w}^T \mathbf{x}_i + b \le 0 \quad \text{if } y_i = -1, \end{cases}$$

which is equivalent to

$$y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 0.$$

Classification example

- A perfect classification is possible only if the training data is *linearly* separable, which is the case when the constraint $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 0$ is satisfied for all (\mathbf{x}_i, y_i) .
- In general, many hyperplanes satisfy this constraint.
- Which one should we choose?

Perceptron

- A perceptron is also a linear classifier.
- When the activation function is the sign function, we have:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b).$$

Seems related to a hyperplane, no?

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The update rule for a perceptron is

$$w_i \leftarrow w_i + \alpha \times \mathbf{x}_i(i) \times (y_i - f(\mathbf{x}_i))$$

where $\mathbf{x}_i(i)$ is element *i* of \mathbf{x}_i .

- When the current decision boundary correctly classifies all examples, the learning algorithm stops.
- Previous update rule converges to any hyperplane satisfying y_i(w^Tx_i + b) ≥ 0 for all i.
- Decision boundary depends on *all* training patterns and initial solution.

SVM goal

- SVM maximize distance between decision boundary and *closest* sample(s), called *support vectors* (SV).
- Only the SVs affect the location of the decision boundary.

Non-uniqueness of hyperplane representation

- As seen before, the representation of a hyperplane is not unique.
- We rescale w and *b* such that SVs satisfy $|\mathbf{w}^T \mathbf{x}_i + b| = 1$.

Margin

- Let **x**₁ and **x**₂ be two SVs from different sets.
- From our rescaling assumption, we have

$$\mathbf{w}^T \mathbf{x}_1 + b = +1$$
$$\mathbf{w}^T \mathbf{x}_2 + b = -1,$$

which leads to

$$\mathbf{w}^{T}(\mathbf{x}_{1} - \mathbf{x}_{2}) = 2$$
$$\frac{\mathbf{w}^{T}}{||\mathbf{w}||}(\mathbf{x}_{1} - \mathbf{x}_{2}) = \frac{2}{||\mathbf{w}||}$$

• The quantity $\frac{2}{||\mathbf{w}||}$ is called the *margin*.

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Geometrical interpretation of the margin

 The margin is the distance measured perpendicularly to the hyperplane between SVs from different sets.

Minimize

$$||\mathbf{w}|| = \mathbf{w}^T \mathbf{w}$$

subject to the constraints

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$
 for all *i*.

- Solution to this constrained optimization problem can be found using method of Lagrange multipliers.
- It has the form

$$\mathbf{w} = \sum_{j} v_j \mathbf{x}_j, \ j < p$$

where \mathbf{x}_i are the support vectors.

< 同 > < 回 > < 回 > <

Linear separability

• What if the training data is not linearly separable?

臣

Minimize

$$\mathbf{w}^T \mathbf{w} + \lambda \sum_i \epsilon_i^\delta, \ \delta \ge 0$$

subject to the constraints

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1-\epsilon_i, \ \epsilon_i \ge 0.$$

where ϵ_i allows for some error.

• This is not a convex optimization problem.

• (1) • (

Input space vs Feature space

- Map the input vectors nonlinearly into a higher-dimensional *feature space*.
- Compute the hyperplane in this feature space.

• Use a nonlinear map

$$\Phi: \Re^n \to \Re^m, m > n$$

- If *m* is huge, the dot product in the feature space can be very expensive to compute.
- Fortunately, we can use *kernel* functions.
- All computations performed in input space!

Kernel function example

• One can use the *polynomial* kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^d$$

• When d = 2, we have

$$(\mathbf{x}^T \mathbf{y})^2 = \left(\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \cdot \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \right)^2 = \left(\begin{bmatrix} x_0^2 \\ \sqrt{2}x_0x_1 \\ x_1^2 \end{bmatrix} \cdot \begin{bmatrix} y_0^2 \\ \sqrt{2}y_0y_1 \\ y_1^2 \end{bmatrix} \right)$$

which defines

$$\Phi(\mathbf{x}) = [x_0^2, \sqrt{2}x_0x_1, x_1^2]^T$$

 All dot products can be done in 2D (input) space instead of 3D (feature) space.

Generalization can arise from

- small dimensionality of feature space,
- large separating margin,
- small number of support vectors.
- SVM rely on the last two.

Example of a SV classifier

 Classification between circles and disks using a radial basis function lernel [Support vector machines, M.A. Hearst, IEEE Intelligent Systems, 1998].

Example of SVM applied to face detection

 Geometrical interpretation of how the SVM separates the face and nonface classes.

Stéphane Pelletier Lecture on Support Vector Machines (SVM)

Example of SVM applied to face detection (cont.)

• A few nonface examples used for training

Stéphane Pelletier Lecture on Support Vector Machines (SVM)

< ∃⇒

< A > <

Example of SVM applied to face detection (cont.)

• Face detection in a *new* image

A B A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A