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Overview of SVMs

@ Set of related supervised learning methods used for
classification and regression.

@ Based on simple ideas and thus provide a clear intuition of
what learning from examples is about.

@ Are not affected by local minima.
@ Do not suffer from the curse of dimensionality.
@ Can lead to high performances in practical applications.
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Overview of SVMs (cont.)

@ Simple enough to be analyzed mathematically (unlike
neural net).

@ Correspond to a linear method in a high-dimensional
feature space nonlinearly related to input space.

@ But! Does not involve computation in this high-dimensional
feature space.

@ By using kernels, all computations can be performed in
input space.
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Hyperplane concept

@ A hyperplane is a higher-dimensional generalization of a
plane in 3D.

@ It has codimension 1, i.e., it has dimensionn — 1 in an
n-dimensional space,

@ A hyperplane divides...

|

e

a space in two half-spaces  a plane in two half-planes  a line in two rays
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Mathematical representation of a hyperplane

@ A hyperplane in an n-dimensional space is defined by
X0y -y Xn—1 | Woxo + - .. + Wy—1X4—1 + b =0, (1)

where wq ... w,_; and b are scalar coefficients.
@ Using vector notation, one can rewrite Equation 1 as

x| wix+b=0, 2)

where w = [wowy ... wyq]T @and x = [xo x1 ... x,—1]".
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Hyperplane examples

W I
\ A
@ w is a vector perpendicular to the hyperplane.

@ when ||w|| = 1, b is the distance between the hyperplane
and the origin.

@ |s the representation of a hyperplane unique?
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Hyperplane classifiers

@ The two half-spaces defined by a hyperplane are
wix+b<0and w/x+5b>0.

@ These can be used to define a function f : #" — {£1} for
classifying a vector x € R" into one of two classes, namely
—1lorl:

f(x) = sign(w'x + b).

@ The hyperplane w’x + b = 0 is called the decision
boundary.
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Hyperplane classifiers (cont.)

wWx+b>0
(x)=+1 g
decision
boundary @) @) o .
N o

® wWx+b<0
f(x) = -1

f(x) = sign(w'x + b)
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Learning the classification function parameters

@ Given w and b, we know we can classify any point x.

@ Given a set of points, can we find a hyperplane (i.e. w and
b) that correctly classifies them?

@ Motivation: learning from examples.
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Pattern recognition from examples

@ Suppose we have a set of p classified patterns

(Xiayi)) i€ {07 17 P — 1}7

where x; is a n-dimensional pattern (vector) and y; € {£1}
is its class label.

@ We would like to find a function f : ®* — {£1} that
correctly classifies all patterns.

@ This implies finding a hyperplane (i.e. w and b) such that

wix;+b>0 ify;=+1,
wixi+b<0 ify=—I,

which is equivalent to

y,'(WTXi = b) > 0.
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Classification example

@ A perfect classification is possible only if the training data is
linearly separable, which is the case when the constraint
yi(wl'x; + b) > 0 is satisfied for all (x;, y;).

@ In general, many hyperplanes satisfy this constraint.

@ Which one should we choose?
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@ A perceptron is also a linear classifier.
@ When the activation function is the sign function, we have:

f(x) = sign(w'x + b).
@ Seems related to a hyperplane, no?

2 activation function
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Perceptron learning

@ The update rule for a perceptron is
Wi «— w; +a X Xi(i) X (yi —f(X,‘))

where x;(i) is element i of x;.

@ When the current decision boundary correctly classifies all
examples, the learning algorithm stops.

@ Previous update rule converges to any hyperplane
satisfying y;(w’x; + b) > 0 for all i.

@ Decision boundary depends on all training patterns and
initial solution.
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SVM goal

@ SVM maximize distance between decision boundary and
closest sample(s), called support vectors (SV).

@ Only the SVs affect the location of the decision boundary.
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Non-uniqueness of hyperplane representation

@ As seen before, the representation of a hyperplane is not
unique.
@ We rescale w and b such that SVs satisfy |w'x; + b| = 1.
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@ Let x; and x, be two SVs from different sets.
@ From our rescaling assumption, we have

wix| +b=+1

wixs+b=—1,

@ which leads to
WT(Xl — Xz) =7
WT

T =,

2|

@ The quantity H—VZVH is called the margin.
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Geometrical interpretation of the margin

@ The margin is the distance measured perpendicularly to
the hyperplane between SVs from different sets.

X | WX + b= +1}

WX, +b=+1
® WX, +b=-1
y,=-1 Wi(x-x;) =2
_T(X —x ):L
® Iwl™™ 727wl
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Problem to solve

@ Minimize
Iw|| = w'w

subject to the constraints
yi(w'x; + b) > 1 for all i.

@ Solution to this constrained optimization problem can be
found using method of Lagrange multipliers.

@ It has the form
W= Z ViXj, ] <P

J

where x; are the support vectors.
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Linear separability

@ What if the training data is not linearly separable?
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Soft Margin Hyperplane

@ Minimize
wTw+/\Ze?, 6>0

subject to the constraints
y,-(wal- I b) >1—¢, ¢2>0.

where ¢; allows for some error.
@ This is not a convex optimization problem.
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Input space vs Feature space

@ Map the input vectors nonlinearly into a higher-dimensional
feature space.

@ Compute the hyperplane in this feature space.

Input space Feature space
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Kernel functions

@ Use a nonlinear map
O:R'"—>R"m>n

@ If mis huge, the dot product in the feature space can be
very expensive to compute.

@ Fortunately, we can use kernel functions.

@ All computations performed in input space!
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Kernel function example

@ One can use the polynomial kernel
k(x,y) = (x"y)?
@ When d = 2, we have
2 2
2 XO yO
(x"y)? = ([io ] : [yo ]) = (! V2xox; ] : { V2yoy1 ]) .
1 V1 2 2
1 B4
which defines
d(x) = [x(z), \fooxl, x%]T

@ All dot products can be done in 2D (input) space instead of
3D (feature) space.
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Generalization hability

@ Generalization can arise from

e small dimensionality of feature space,
e large separating margin,
e small number of support vectors.

@ SVM rely on the last two.

Stéphane Pelletier Lecture on Support Vector Machines (SVM)



Example of a SV classifier

@ Classification between circles and disks using a radial
basis function lernel [Support vector machines, M.A.
Hearst, IEEE Intelligent Systems, 1998].
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Example of SVM applied to face detection

@ Geometrical interpretation of how the SVM separates the
face and nonface classes.
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Example of SVM applied to face detection (cont.)

@ A few nonface examples used for training
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Example of SVM applied to face detection (cont.)

@ Face detection in a new image
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