
Lecture on Support Vector Machines (SVM)
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stephane.pelletier@mail.mcgill.ca

March 29, 2007
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Overview of SVMs

Set of related supervised learning methods used for
classification and regression.
Based on simple ideas and thus provide a clear intuition of
what learning from examples is about.
Are not affected by local minima.
Do not suffer from the curse of dimensionality.
Can lead to high performances in practical applications.
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Overview of SVMs (cont.)

Simple enough to be analyzed mathematically (unlike
neural net).
Correspond to a linear method in a high-dimensional
feature space nonlinearly related to input space.
But! Does not involve computation in this high-dimensional
feature space.
By using kernels, all computations can be performed in
input space.
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Hyperplane concept

A hyperplane is a higher-dimensional generalization of a
plane in 3D.
It has codimension 1, i.e., it has dimension n− 1 in an
n-dimensional space,
A hyperplane divides...

a space in two half­spaces a plane in two half­planes a line in two rays
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Mathematical representation of a hyperplane

A hyperplane in an n-dimensional space is defined by

x0, . . . , xn−1 | w0x0 + . . . + wn−1xn−1 + b = 0, (1)

where w0 . . . wn−1 and b are scalar coefficients.
Using vector notation, one can rewrite Equation 1 as

x | wTx + b = 0, (2)

where w = [w0 w1 . . . wn−1]T and x = [x0 x1 . . . xn−1]T .
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Hyperplane examples

w

w

w is a vector perpendicular to the hyperplane.
when ||w|| = 1, b is the distance between the hyperplane
and the origin.
Is the representation of a hyperplane unique?
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Hyperplane classifiers

The two half-spaces defined by a hyperplane are

wTx + b ≤ 0 and wTx + b ≥ 0.

These can be used to define a function f : <n → {±1} for
classifying a vector x ∈ <n into one of two classes, namely
−1 or 1:

f (x) = sign(wTx + b).

The hyperplane wTx + b = 0 is called the decision
boundary.
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Hyperplane classifiers (cont.)

decision 
boundary

wTx + b > 0

wTx + b < 0
f(x) = ­1

f(x) = +1

f(x) = sign(wTx + b)
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Learning the classification function parameters

Given w and b, we know we can classify any point x.
Given a set of points, can we find a hyperplane (i.e. w and
b) that correctly classifies them?
Motivation: learning from examples.
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Pattern recognition from examples

Suppose we have a set of p classified patterns

(xi, yi), i ∈ {0, 1, . . . , p− 1},

where xi is a n-dimensional pattern (vector) and yi ∈ {±1}
is its class label.
We would like to find a function f : <n → {±1} that
correctly classifies all patterns.
This implies finding a hyperplane (i.e. w and b) such that

wTxi + b ≥ 0 if yi = +1,
wTxi + b ≤ 0 if yi = −1,

which is equivalent to

yi(wTxi + b) ≥ 0.
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Classification example

A perfect classification is possible only if the training data is
linearly separable, which is the case when the constraint
yi(wTxi + b) ≥ 0 is satisfied for all (xi, yi).
In general, many hyperplanes satisfy this constraint.
Which one should we choose?

y
i
 = +1

y
i
 = ­1
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Perceptron

A perceptron is also a linear classifier.
When the activation function is the sign function, we have:

f (x) = sign(wTx + b).

Seems related to a hyperplane, no?

x
0

x
1

x
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w
0

w
1

w
2 activation function

f(x)
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Perceptron learning

The update rule for a perceptron is

wi ← wi + α× xi(i)×
(
yi − f (xi)

)
where xi(i) is element i of xi.
When the current decision boundary correctly classifies all
examples, the learning algorithm stops.
Previous update rule converges to any hyperplane
satisfying yi(wTxi + b) ≥ 0 for all i.
Decision boundary depends on all training patterns and
initial solution.
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SVM goal

SVM maximize distance between decision boundary and
closest sample(s), called support vectors (SV).
Only the SVs affect the location of the decision boundary.

{x | w
Tx + b = 0}

y
i
 = +1

y
i
 = ­1
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Non-uniqueness of hyperplane representation

As seen before, the representation of a hyperplane is not
unique.
We rescale w and b such that SVs satisfy |wTxi + b| = 1.

{x | w
Tx + b = 0}

{x | wTx + b = +1}

{x | wTx + b = ­1}

y
i
 = +1

y
i
 = ­1
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Margin

Let x1 and x2 be two SVs from different sets.
From our rescaling assumption, we have

wTx1 + b = +1

wTx2 + b = −1,

which leads to
wT(x1 − x2) = 2

wT

||w||
(x1 − x2) =

2
||w||

The quantity 2
||w|| is called the margin.
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Geometrical interpretation of the margin

The margin is the distance measured perpendicularly to
the hyperplane between SVs from different sets.

w

{x | w
Tx + b = 0}

{x | wTx + b = +1}

{x | wTx + b = ­1}

y
i
 = +1

y
i
 = ­1

wTx
1
 + b = +1

wTx
2
 + b = ­1

wT(x
1
­ x

2
) = 2

x
2

x
1

margin

wT

∣∣w∣∣
x1−x2=

2
∣∣w∣∣
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Problem to solve

Minimize
||w|| = wTw

subject to the constraints

yi(wTxi + b) ≥ 1 for all i.

Solution to this constrained optimization problem can be
found using method of Lagrange multipliers.
It has the form

w =
∑

j

vjxj, j < p

where xj are the support vectors.
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Linear separability

What if the training data is not linearly separable?
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Soft Margin Hyperplane

Minimize
wTw + λ

∑
i

εδ
i , δ ≥ 0

subject to the constraints

yi(wTxi + b) ≥ 1− εi, εi ≥ 0.

where εi allows for some error.
This is not a convex optimization problem.
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Input space vs Feature space

Map the input vectors nonlinearly into a higher-dimensional
feature space.
Compute the hyperplane in this feature space.

Input space Feature space

( )x

Stéphane Pelletier Lecture on Support Vector Machines (SVM)



Kernel functions

Use a nonlinear map

Φ : <n → <m, m > n

If m is huge, the dot product in the feature space can be
very expensive to compute.
Fortunately, we can use kernel functions.
All computations performed in input space!
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Kernel function example

One can use the polynomial kernel

k(x, y) = (xTy)d

When d = 2, we have

(xTy)2 =
([

x0
x1

]
·
[

y0
y1

])2

=

 x2
0√

2x0x1
x2

1

 ·
 y2

0√
2y0y1
y2

1

 .

which defines

Φ(x) = [x2
0,
√

2x0x1, x2
1]

T

All dot products can be done in 2D (input) space instead of
3D (feature) space.
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Generalization hability

Generalization can arise from
small dimensionality of feature space,
large separating margin,
small number of support vectors.

SVM rely on the last two.
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Example of a SV classifier

Classification between circles and disks using a radial
basis function lernel [Support vector machines, M.A.
Hearst, IEEE Intelligent Systems, 1998].
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Example of SVM applied to face detection

Geometrical interpretation of how the SVM separates the
face and nonface classes.
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Example of SVM applied to face detection (cont.)

A few nonface examples used for training
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Example of SVM applied to face detection (cont.)

Face detection in a new image
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