
Reinforcement Learning for Active 
Agents 



Active Reinforcement Learning 

§  now need to learn model for all actions, not just for a 
fixed policy 

§  utilities obey Bellman equations: 
 
 

€ 

Uπ (s) = R(s)+γ
a
max P(s' | s,a)U(s')s'∑

can solve using value iteration 
or policy iteration seen before 



TD Update Algorithm for Active Agent 
What has to change? 

// s, a, r, previous state, action and reward 
// s’ , r’  current state, reward  
 
______________________ 
if s’ is new then U[s’] ← r’  
if s is not null then 

 increment N[s] 
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s]) 

if TERMINAL?[s’] then s, a, r  ← null 
else s, a, r  ← s’, _______________, r’  
return a 



TD Update Algorithm for Active Agent 
What has to change? 

// s, a, r, previous state, action and reward 
// s’ , r’  current state, reward  
 
UPDATE MODEL (P,s,a,s’) 
if s’ is new then U[s’] ← r’  
if s is not null then 

 increment N[s] 
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s]) 

if TERMINAL?[s’] then s, a, r  ← null 
else s, a, r  ← s’, CHOOSE ACTION(P,U,s), r’  
return a 



How to choose action? 

§  greedy agent: pick whichever action has highest 
expected utility 
+ gives us best expected score 
- doesn’t give agent a chance to explore 



Optimistic Prior 

§  modified constraints that assume existence of 
rewards in unexplored states 

 
U+(s) ← R(s) + γ maxaf(Σs’ P(s’|s,a)U+(s’), N(s,a)) 



Exploration Function f(u,n)  

§  increasing in u, decreasing in n 
§  why is U+ rather than plain U  used on the RHS? 
§  if only U  were used: 

§  unexplored states would be valued 
§  but not explored states leading to unexplored states 



Performance of exploratory ADP 

Greedy ADP 



Action-Value Function 

§  value of doing action a in state s is Q(s,a) 
§  then U(s) = maxaQ(s,a) 
§  constraint equation at equilibrium: 

 Q(s,a) = R(s) + γΣs’P(s’|s,a)maxa’Q(s’,a’) 
§  can apply constraint equation for iterative 

update using ADP 
§  but this means we need to learn model, P  



TD Q-learning 

§  learn from experience: 
 Q(s,a) ← Q(s,a) + α(R(s) + γ maxa’Q(s’,a’) - Q(s,a)) 

 
§  also known as SARSA:  

State(t), Action(t,) Reward, State(t+1), Action(t+1) 
 

§  doesn’t need P 
§  but again, exploration function is very important 
§  incorporate optimistic priors into Q-value estimates 



Exploratory Q-Learning-Agent 
 
// s, a, r, previous state, action, and reward, initially null 
// s’ is current state, r’ is reward signal 
if TERMINAL?[s’] then Q[s,None] ← r’ 
if s not null then 

increment Nsa[s,a] 
Q[s,a] ← Q[s,a] + α(Nsa [s,a])(r +γmaxa’Q[s’,a’] - Q[s,a]) 

s, a, r ← s’, argmaxa’ f(Q[a’,s’], N[s’,a’]), r’ 
return a 



Samuel’s checkers 
§  Scoring function: based on 

the position of the board at any 
given time, tries to measure 
the chance of winning for each 
side at the given position. 

§  Program chooses its move 
based on a minimax strategy 

§  Self-improvement: 
Remembering every position it 
had already seen, along with 
the terminal value of the 
reward function. It played 
thousands of games against 
itself as another way of 
learning. 

§  Success: First to play any 
board game at a relatively high 
of level (by mid-1970s) -- 
earliest successful machine 
learning research 



TD-Gammon  
Tesauro, 1992 

§  learned to play 
backgammon 
extremely well, 
using a neural 
network function 
approximator 
trained by TD 
methods 

§  actually influenced 
play of expert 
humans! 



OBELIX 
Mahadevan and Connell, 1991 

§  robot performed 3 
behaviours in priority 
order: 
§  unwedge (if stuck)  
§  push box 
§  find box 

§  huge state space! 



Generalization in RL 

 
§  if action a is good in state i 

then for all states j such that j ≈ i 
 action a is probably good in state j 



How do we generalize? 

§  naïve solution: 
§  course discretization of state space 

§  elegant solutions: 
§  update neighbouring states based on similarity 
§  statistical clustering techniques 


