
Reinforcement Learning for Active
Agents

Active Reinforcement Learning

§  now need to learn model for all actions, not just for a
fixed policy

§  utilities obey Bellman equations:

€

Uπ (s) = R(s)+γ
a
max P(s' | s,a)U(s')s'∑

can solve using value iteration
or policy iteration seen before

TD Update Algorithm for Active Agent
What has to change?

// s, a, r, previous state, action and reward
// s’ , r’ current state, reward

if s’ is new then U[s’] ← r’
if s is not null then

 increment N[s]
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s])

if TERMINAL?[s’] then s, a, r ← null
else s, a, r ← s’, _______________, r’
return a

TD Update Algorithm for Active Agent
What has to change?

// s, a, r, previous state, action and reward
// s’ , r’ current state, reward

UPDATE MODEL (P,s,a,s’)
if s’ is new then U[s’] ← r’
if s is not null then

 increment N[s]
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s])

if TERMINAL?[s’] then s, a, r ← null
else s, a, r ← s’, CHOOSE ACTION(P,U,s), r’
return a

How to choose action?

§  greedy agent: pick whichever action has highest
expected utility
+ gives us best expected score
- doesn’t give agent a chance to explore

Optimistic Prior

§  modified constraints that assume existence of
rewards in unexplored states

U+(s) ← R(s) + γ maxaf(Σs’ P(s’|s,a)U+(s’), N(s,a))

Exploration Function f(u,n)

§  increasing in u, decreasing in n
§  why is U+ rather than plain U used on the RHS?
§  if only U were used:

§  unexplored states would be valued
§  but not explored states leading to unexplored states

Performance of exploratory ADP

Greedy ADP

Action-Value Function

§  value of doing action a in state s is Q(s,a)
§  then U(s) = maxaQ(s,a)
§  constraint equation at equilibrium:

 Q(s,a) = R(s) + γΣs’P(s’|s,a)maxa’Q(s’,a’)
§  can apply constraint equation for iterative

update using ADP
§  but this means we need to learn model, P

TD Q-learning

§  learn from experience:
 Q(s,a) ← Q(s,a) + α(R(s) + γ maxa’Q(s’,a’) - Q(s,a))

§  also known as SARSA:

State(t), Action(t,) Reward, State(t+1), Action(t+1)

§  doesn’t need P
§  but again, exploration function is very important
§  incorporate optimistic priors into Q-value estimates

Exploratory Q-Learning-Agent

// s, a, r, previous state, action, and reward, initially null
// s’ is current state, r’ is reward signal
if TERMINAL?[s’] then Q[s,None] ← r’
if s not null then

increment Nsa[s,a]
Q[s,a] ← Q[s,a] + α(Nsa [s,a])(r +γmaxa’Q[s’,a’] - Q[s,a])‏

s, a, r ← s’, argmaxa’ f(Q[a’,s’], N[s’,a’]), r’
return a

Samuel’s checkers
§  Scoring function: based on

the position of the board at any
given time, tries to measure
the chance of winning for each
side at the given position.

§  Program chooses its move
based on a minimax strategy

§  Self-improvement:
Remembering every position it
had already seen, along with
the terminal value of the
reward function. It played
thousands of games against
itself as another way of
learning.

§  Success: First to play any
board game at a relatively high
of level (by mid-1970s) --
earliest successful machine
learning research

TD-Gammon
Tesauro, 1992

§  learned to play
backgammon
extremely well,
using a neural
network function
approximator
trained by TD
methods

§  actually influenced
play of expert
humans!

OBELIX
Mahadevan and Connell, 1991

§  robot performed 3
behaviours in priority
order:
§  unwedge (if stuck)
§  push box
§  find box

§  huge state space!

Generalization in RL

§  if action a is good in state i

then for all states j such that j ≈ i
 action a is probably good in state j

How do we generalize?

§  naïve solution:
§  course discretization of state space

§  elegant solutions:
§  update neighbouring states based on similarity
§  statistical clustering techniques

