Reinforcement Learning for Active
Agents



Active Reinforcement Learning

= now need to learn model for all actions, not just for a
fixed policy
= utilities obey Bellman equations:

U’ (s) = R(s) +ymax >, P(s' s,@)U(s")

can solve using value iteration
or policy iteration seen before



TD Update Algorithm for Active Agent
What has to change?

/'S, a, r, previous state, action and reward
/s’ , r current state, reward

if s’is new then U[s"] < I
if s is not null then

iIncrement N[s]

U[s] <= U[s] + a(N[s]) (r + yU[s'] - U[s])
if TERMINAL?[s’] then s, a, r <= null
elses, a r < s/ ,r
return a




TD Update Algorithm for Active Agent
What has to change?

/'S, a, r, previous state, action and reward
/s’ , r' current state, reward

UPDATE MODEL (P,s,a,s’)
if s”is new then U[s’] <= I
if s is not null then
iIncrement N[s]
U[s] <= U[s] + a(N[s]) (r + yU[s'] - U[s])
if TERMINAL?[s’] then s, a, r <= null
else s, a,r < s, CHOOSE ACTION(P,U,s), r’
return a



How to choose action?

= greedy agent: pick whichever action has highest

expected utility
gives us best expected score
- doesn’t give agent a chance to explore

2 :
M 3 m—— — — +1
b ; RMS error
_i L3 1 Policy loss -==-=--- ey
s
g 9 '
5 | -
S
‘n
E 0.5 |
258255 corican e 1 ——e i t ‘
0

0 50 100 150 200 250 300 350 400 450 500
Number of trials 1 2 3 4



Optimistic Prior

= modified constraints that assume existence of
rewards in unexplored states

U*(s) < R(s) + ymax f(2,. P(s’|s,a)U*(s’), N(s,a))



Exploration Function f(u,n)

= increasing in u, decreasing in n
= why is U* rather than plain U used on the RHS?

= if only U were used:
= unexplored states would be valued
= but not explored states leading to unexplored states



Performance of exploratory ADP

“ .2
h 1.4 -
§ (5 . RMS error g 1.2 4 RMS error
% . Policy loss -=------ > ;| W Policy loss ~--------
= 2 '
& . 2038 |
S o
5 2 06
(7] n
= 0.5 | 5 041
iu.m_ —————————————————————
L O — 0.2 1 , :
V3, S ———— | — ——
0 50 100 150 200 250 300 350 400 450 500 0 20 40 ! 60 80 100
Number of trials Number of trials
(a) (b)

Greedy ADP



Action-Value Function

= value of doing action a in state s is Q(s,a)
= then U(s) = max_,Q(s,a)
= constraint equation at equilibrium:
Q(s,a) = R(s) + y2..P(s’|s,a)max,Q(s’,a’)

= can apply constraint equation for iterative
update using ADP

= put this means we need to learn model, P



TD Q-learning

= learn from experience:
Q(s,a) < Q(s,a) + a(R(s) + ymax_Q(s’,a’) - Q(s,a))

= also known as SARSA:
State(t), Action(t,) Reward, State(t+1), Action(t+1)

= doesn’t need P
= but again, exploration function is very important
= incorporate optimistic priors into Q-value estimates



Exploratory Q-Learning-Agent

/l's, a, r, previous state, action, and reward, initially null
// s’ is current state, r' is reward signal
if TERMINAL?[s’] then Q[s,None] < r’
if s not null then

increment N_[s,a]

Q[s,a] < Q[s,a] + a(Ng, [s,a])(r +ymax,Q[s’,a’] - Q[s,a])
S, a, r<— s, argmax, f(Q[a’,s’], N[s',a’]), I
return a



Samuel’s checkers

Scoring function: based on
the position of the board at any
given time, tries to measure
the chance of winning for each

side at the given position. = Success: First to play any
Program chooses its move board game at a relatively high
based on a minimax strategy of level (by mid-1970s) --

earliest successful machine

Self-improvement: _
learning research

Remembering every position it
had already seen, along with
the terminal value of the
reward function. It played
thousands of games against
itself as another way of
learning.



TD-Gammon
Tesauro, 1992

= |earned to play
backgammon
extremely well,
using a neural
network function
approximator
trained by TD
methods

= actually influenced
play of expert
humans!

22 23 24

Figure 3. A complex situation where TD-Gammaon's positional judgment is ap-
parently superior to traditional expert thinking. YWhite is to play 4-4. The obvious
human play is 8-4%, 8-4, 11-7, 11-7. (The asterisk denotes that an opponent
checker has been hit.) However, TD-Gammon's choice is the surprising 8-4%,
g-4, 21-17, 21-171 TD-Gammon's analysis of the two plays is given in Table 3.



OBELIX

Mahadevan and Connell, 1991

= robot performed 3
behaviours In priority
order:

= unwedge (if stuck)

= push box
= find box

* huge state space!




Generalization in RL

= |f action a is good in state i
then for all states j such that j =i
action a is probably good In state j



How do we generalize?

= naive solution:
= course discretization of state space

» elegant solutions:

= update neighbouring states based on similarity
= statistical clustering techniques



