
Reinforcement Learning

Kinds of Learning

§  we know the correct output label for each example:
supervised learning
§  e.g., a chess-playing agent that is told explicitly the “correct”

move for each position

§  what about when agent only receives a reward (or
penalty) at the end of a sequence of actions?
§  e.g., chess-playing agent “checkmates” at end of game
§  temporal credit assignment problem: which was the good

move?

Reinforcement Learning

§  how does an agent learn when given:
§  no (or limited) model of environment?
§  no utility function?

§  use rewards or reinforcement to learn
agent function

Agent Types

§  utility-based agent
§  learns a utility function on states and uses this to select

actions that maximize utility of outcome (i.e., next state)

§  Q-learning agent
§  learns an action-utility function: expected utility of taking

action a in state s

§  reflex agent
§  learns a policy that maps directly from states to actions

Utility-based vs. Q-learning agents

§  utility-based agent
§  has to know the state to which its action will lead to

determine utilities
§  therefore needs a model of the environment

§  Q-learning agent
§  can compare the values of its choices without knowledge of

the outcome state
§  therefore it doesn’t need a model of the environment

Characterizing the Learning Task

§  Environment: known or unknown
§  does agent know effects of actions?
§  does agent have a model of environment?
§  (we will assume accessible environment)

§  Learning Type: passive or active
§  passive: agent has a fixed policy (only learns

how “good” each state or action is)
§  active: agents has to learn what to do

§  Rewards: terminal only or non-terminal

Passive learning in a fully observable
environment

§  policy π is fixed
§  want to learn how good π(s)

is, i.e., Uπ(s)
§  similar to policy evaluation
§  main difference: agent does

not know:
§  transition model P(s’|s,a)
§  the reward function R(s)

Direct Utility Estimation (DUE)

§  recall:

§  so, agent can execute a series of trials,

using each to obtain a sample of the reward-
to-go for each state visited

00
() [() | ,]t

tt
U s E R s s sπ γ π

∞

=
= =∑

DUE

§  maintain a running
average of the reward-
to-go values

§  after infinitely many
trials, the averages will
converge to true
expected values

(1,1)-.04 → (1,2)-.04 → (1,3)-.04 → (1,2)-.04 → (1,3)-.04 → (2,3)-.04 → (3,3)-.04 → (4,3)+1

DUE Algorithm

add s to percepts
if TERMINAL?[s] then

 reward-to-go ← 0
 for each si in percepts (starting at end) do

reward-to-go ← reward-to-go + REWARD[si]
U[si] ←RUNNING_AVG (U[si], reward-to-go, N[si])
increment N[si]

How fareth DUE?

§  ignores all of its acquired experience whenever it encounters a
new state… leads to slow convergence

U ≈ -0.8

p ≈ 0.9

p ≈ 0.1

-1

+1

U = ?

U ≈ -0.8

But you can do better!

§  recall: utility of states are not independent
§  for a fixed policy:

€

Uπ (s) = R(s)+γ P(s'| s,π(s))Uπ (s')s'∑

Adaptive Dynamic Programming

§  learn transition model of the environment
P(s’|s,π(s)) and observe rewards R(s)

§  solve MDP using linear algebra
§ can solve the set of linear equations
§ or use a modified variant of policy iteration

§ alas, intractable for large state spaces

€

Uπ (s) = R(s)+γ P(s'| s,π(s))Uπ (s')s'∑

ADP algorithm
// s’ , r’ current state, reward, π, a fixed policy
// Nsa, table of frequencies for state-action pairs, initially zero

// Ns’|sa, table of outcome frequencies given state-action pairs

if s’ is new then U[s’] ← r’ ; R[s’] ← r’
if s is not null then

 increment Nsa[s,a] and Ns’|sa[s’,s,a]
 for each t such that Ns’|sa[t,s,a] is nonzero do

P(t |s,a) ← Ns’|sa[t,s,a] / Nsa[s,a]
U ← POLICY-EVALUATION(π,U,mdp)
if TERMINAL(s’) then s,a ← null else s,a ← s’, π(s’)
return a

Temporal difference learning

§  approximate constraint equations without
solving them for all states:

§  use observed transitions to adjust values
of observed states so that they agree
with the constraint equations

€

Uπ (s)←Uπ (s)+α(R(s)+ γUπ (s')−Uπ (s))

Passive TD Update Algorithm
// s, a, r, previous state, action and reward
// s’ , r’ current state, reward

if s’ is new then U[s’] ← r’
if s is not null then

 increment N[s]
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s])

if TERMINAL(s’) then s, a, r ← null
else s, a, r ← s’, π[s’], r’
return a

TD vs. ADP

§  ADP updates utility estimates to make each state “agree”
with successors:
as many adjustments as necessary to restore consistency

§  TD updates estimate only for observed successor state:
a single adjustment per iteration

§  isn’t this wrong? what if we adjust for a low probability
outcome?

§  TD is a crude but efficient first approximation for ADP

ADP vs. TD Performance

ADP

TD

Homework

§  Reinforcement Learning Exercise
§  Do question #1 now, question #2 after

Friday’s lecture

