Reinforcement Learning



Kinds of Learning

= we know the correct output label for each example:
supervised learning

= e.dg., a chess-playing agent that is told explicitly the “correct”
move for each position
= what about when agent only receives a reward (or
penalty) at the end of a sequence of actions?
= e.g., chess-playing agent “checkmates” at end of game

= temporal credit assignment problem: which was the good
move?



Reinforcement Learning

= how does an agent learn when given:
= no (or limited) model of environment?
= no utility function?

= yse rewards or reinforcement to learn
agent function



Agent Types

= utility-based agent

= |earns a utility function on states and uses this to select
actions that maximize utility of outcome (i.e., next state)

= Q-learning agent

= |earns an action-utility function: expected utility of taking
action a in state s

= reflex agent
= learns a policy that maps directly from states to actions



Utility-based vs. Q-learning agents

= utility-based agent

= has to know the state to which its action will lead to
determine utilities

= therefore needs a model of the environment

= Q-learning agent
= can compare the values of its choices without knowledge of
the outcome state

= therefore it doesn’t need a model of the environment



Characterizing the Learning Task

o . known or unknown
= does agent know effects of actions?
= does agent have a model of environment?

(we will assume accessible environment)

: . passive or active

= passive: agent has a fixed policy (only learns
how “good” each state or action is)

= active: agents has to learn what to do
- . terminal only or non-terminal



Passive learning in a fully observable

environment

= policy mTis fixed

= want to learn how good 17(s)
s, i.e., U"(s)

= similar to policy evaluation

= main difference: agent does
not know:
= transition model P(s’|s,a)
= the reward function R(s)

+1

START




Direct Utility Estimation (DUE)

= recall: U”(s) = E[EZO v'R(s,)|x,s, =]

* S0, agent can execute a series of trials,
using each to obtain a sample of the reward-

to-go for each state visited



DUE

= maintain a running

average of the reward-

to-go values
= after infinitely many . =
trials, the averages will |

converge to true |
START
expected values

1 2 3 4

(1,1).04 = (1,2). 04 = (1,3).04 = (1,2). 04 = (1,3).04 = (2,3).04 = (3,3).04 = (4,3).



DUE Algorithm

add s to percepts

if TERMINAL?[s] then
reward-to-go <— 0
for each s;in percepts (starting at end) do
reward-to-go < reward-to-go + REWARDs; ]
U[s;] <=RUNNING_AVG (U][s;], reward-to-go, N[s])
increment N[s]



How fareth DUE?

e
/

= ignores all of its acquired experience whenever it encounters a
new state... leads to slow convergence

y
p=0.1



But you can do better!

= recall: utility of states are not independent
= for a fixed policy:

U (s) = R(s) + 7S, P(s' s,7(s))U" (s')



Adaptive Dynamic Programming

U (s) = R(s) + vy P(s'l s,7(s)U” (5')

= learn transition model of the environment
P(s’|s,7(s)) and observe rewards R(s)

= solve MDP using linear algebra

= can solve the set of linear equations
= or use a modified variant of policy iteration

= alas, intractable for large state spaces



ADP algorithm

/'s’, r current state, reward, m, a fixed policy
//' N, table of frequencies for state-action pairs, initially zero
/N table of outcome frequencies given state-action pairs

s’|sar
if s’is new then U[s'| < r'; R[s] < I
if s is not null then

increment N, /s,al and N, [s’s,a]

for each tsuch that . /t,s,a] is nonzero do

P(t|s,a) <= Ngslts,al / Ng[s,al

UJ <= POLICY-EVALUATION(1T,U,mdp)
if TERMINAL(S’) then s,a < null else s,a < s’, n1(s))
return a



Temporal difference learning

= approximate constraint equations without
solving them for all states:

* use observed transitions to adjust values
of observed states so that they agree
with the constraint equations

U7 (5) < U (s) + a(R(s) + yU (s") = U (s))



Passive TD Update Algorithm

/'S, a, r, previous state, action and reward
/'s’, r’ current state, reward

if s’is new then U[s"] < I
if s is not null then

iIncrement N[s]

U[s] <= U[s] + a(N[s]) (r + yU[s] - U[s])
if TERMINAL(sS’) then s, a, r < null
elses, a,r <s’,as’], r
return a



TD vs. ADP

= ADP updates utility estimates to make each state “agree”
with successors:
as many adjustments as necessary to restore consistency

= TD updates estimate only for observed successor state:
a single adjustment per iteration

= isn’t this wrong? what if we adjust for a low probability
outcome?

= TD is a crude but efficient first approximation for ADP



vs. TD Performance

0.6 -
1
0.5 {
2
v 0.8 =
§ H 04 {
g . 5
g 06 5 03
E o4 ;
= U w P
2 5 0.2
0.2 0.1 {
0 . . ; v — 0 v . .
0 20 40 60 80 100 0 20 40 60 80 100
Number of trials Number of trials
(a) (b)
0.6 1 !
0.5
i z
g é 0.4 1
§ 5 03
._:.‘ o
=3 w
3 2 0.2
o

S

100

200 300 400
Number of trials

(a)

500

=

o

- |

20 40 60 80 100
Number of trials

(b)

ADP

D



Homework

= Reinforcement Learning Exercise

= Do question #1 now, question #2 after
Friday’s lecture



