
Reinforcement Learning 



Kinds of Learning 

§  we know the correct output label for each example: 
supervised learning 
§  e.g., a chess-playing agent that is told explicitly the “correct” 

move for each position  

§  what about when agent only receives a reward (or 
penalty) at the end of a sequence of actions? 
§  e.g., chess-playing agent “checkmates” at end of game 
§  temporal credit assignment problem: which was the good 

move? 



Reinforcement Learning 

§  how does an agent learn when given: 
§  no (or limited) model of environment? 
§  no utility function? 

§  use rewards or reinforcement to learn 
agent function 
 



Agent Types 

§  utility-based agent 
§  learns a utility function on states and uses this to select 

actions that maximize utility of outcome (i.e., next state) 

§  Q-learning agent 
§  learns an action-utility function: expected utility of taking 

action a in state s 

§  reflex agent 
§  learns a policy that maps directly from states to actions 



Utility-based vs. Q-learning agents 

§  utility-based agent 
§  has to know the state to which its action will lead to 

determine utilities 
§  therefore needs a model of the environment 

§  Q-learning agent 
§  can compare the values of its choices without knowledge of 

the outcome state 
§  therefore it doesn’t need a model of the environment 



Characterizing the Learning Task 

§  Environment: known or unknown 
§  does agent know effects of actions? 
§  does agent have a model of environment? 
§  (we will assume accessible environment) 

§  Learning Type: passive or active 
§  passive: agent has a fixed policy (only learns 

how “good” each state or action is) 
§  active: agents has to learn what to do 

§  Rewards: terminal only or non-terminal 



Passive learning in a fully observable 
environment 

§  policy π is fixed 
§  want to learn how good π(s) 

is, i.e., Uπ(s) 
§  similar to policy evaluation 
§  main difference: agent does 

not know: 
§  transition model P(s’|s,a)  
§  the reward function R(s) 



Direct Utility Estimation (DUE) 

§  recall: 
 
§  so, agent can execute a series of trials, 

using each to obtain a sample of the reward-
to-go for each state visited 
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DUE 

§  maintain a running 
average of the reward-
to-go values 

§  after infinitely many 
trials, the averages will 
converge to true 
expected values 

(1,1)-.04 → (1,2)-.04 → (1,3)-.04 → (1,2)-.04 → (1,3)-.04 → (2,3)-.04 → (3,3)-.04 → (4,3)+1 



DUE Algorithm 

add s to percepts 
if TERMINAL?[s] then  

 reward-to-go ← 0 
 for each si in percepts (starting at end) do 

reward-to-go ← reward-to-go + REWARD[si ]  
U[si ] ←RUNNING_AVG (U[si ], reward-to-go, N[si]) 
increment N[si] 



How fareth DUE? 

§  ignores all of its acquired experience whenever it encounters a 
new state… leads to slow convergence 
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But you can do better! 

§  recall: utility of states are not independent 
§  for a fixed policy: 

€ 

Uπ (s) = R(s)+γ P(s'| s,π(s))Uπ (s')s'∑



Adaptive Dynamic Programming 

§  learn transition model of the environment  
P(s’|s,π(s)) and observe rewards R(s) 

§  solve MDP using linear algebra 
§ can solve the set of linear equations 
§ or use a modified variant of policy iteration 

§ alas, intractable for large state spaces 

€ 

Uπ (s) = R(s)+γ P(s'| s,π(s))Uπ (s')s'∑



ADP algorithm 
// s’ , r’  current state, reward,  π, a fixed policy 
// Nsa, table of frequencies for state-action pairs, initially zero 

// Ns’|sa, table of outcome frequencies given state-action pairs 

if s’ is new then U[s’] ← r’ ; R[s’] ← r’ 
if s is not null then 

 increment Nsa[s,a] and Ns’|sa[s’,s,a] 
 for each t such that Ns’|sa[t,s,a] is nonzero do 

P(t |s,a) ← Ns’|sa[t,s,a] / Nsa[s,a] 
U ← POLICY-EVALUATION(π,U,mdp) 
if TERMINAL(s’) then s,a ← null else s,a ← s’, π(s’) 
return a 



Temporal difference learning 

§  approximate constraint equations without 
solving them for all states: 

§  use observed transitions to adjust values 
of observed states so that they agree 
with the constraint equations 

€ 

Uπ (s)←Uπ (s)+α(R(s)+ γUπ (s')−Uπ (s))



Passive TD Update Algorithm 
// s, a, r, previous state, action and reward 
// s’ , r’  current state, reward  
 
if s’ is new then U[s’] ← r’  
if s is not null then 

 increment N[s] 
 U[s] ← U[s] + α(N[s]) (r + γU[s’] - U[s]) 

if TERMINAL(s’) then s, a, r  ← null 
else s, a, r  ← s’, π[s’], r’  
return a 



TD vs. ADP 

§  ADP updates utility estimates to make each state “agree” 
with successors: 
as many adjustments as necessary to restore consistency 

§  TD updates estimate only for observed successor state:  
a single adjustment per iteration 

§  isn’t this wrong? what if we adjust for a low probability 
outcome? 

§  TD is a crude but efficient first approximation for ADP 



ADP vs. TD Performance 

ADP 

TD 



Homework 

§  Reinforcement Learning Exercise  
§  Do question #1 now, question #2 after 

Friday’s lecture 


