Machine Learning

Recap of last class

- Markov Decision Problems
- Expected utility of a state
- Bellman equation
- Value iteration
- Policy iteration

Agenda

- Introduce definition of machine learning
- Consider types of problems amenable to ML
- Describe general categories of ML techniques
- Introduce different types of learning
- Understand how to avoid overlearning

Early Definition

 Machine learning: "Field of study that gives computers the ability to learn without being explicitly programmed"

-- Arthur Samuel (1959)

ML Problems

- Clustering
- Data reduction
- Classification
- Regression

Clustering

- Given a set of data points, group the points in clusters according to a criterion.
 - e.g., divide the set of photos into four groups of people

Dimensionality Reduction

- Given a set of points, determine how many dimensions are required to represent it. Potentially find the dimensions that are most important or generate new ones.
 - e.g., compress a colour image to store it in the minimum number of bits with sufficient quality to identify who is who

original: 24-bit RGB color

reduced to 4-bits (16 colors)

Classification

- Given labeled data (e.g., class labels), predict the class membership of a new data point.
 - e.g., is the sensor data of earth vibrations indicative of an earthquake or a bomb test?
 - Is the tumor malignant or benign?

Classification with multiple attributes

Regression (Prediction)

- Given the values associated with points, predict the associated value of a new point
 - e.g., when will the value of Facebook stock hit \$300/share?
 - What will a 750 sq ft house sell for?

Credit for this and following graphics: http://holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_gr.html

ML Techniques

- Clustering:
 - k-Means, vector quantization
- Dimensionality Reduction:
 - PCA, SOM, autoencoder
- Classification, regression, prediction:
 - parametric models: Bayes', MAP, ML (and EM algorithm)
 - non-parametric models: k-NN, SVM, decision trees, BPNN

Learning Schemes

- supervised learning
 - learns from labeled examples
- reinforcement learning
 - learns how to act based on observations
- unsupervised learning
 - groups data into categories; no labeled examples available

Supervised Learning

- given examples (x, f(x)), learn (x, h(x)) where $h(x) \approx f(x)$
 - regression: h(x) is a continuous value
 - classification: h(x) is a class label
- goal: minimize error on training (and testing) data
- learning can be:
 - incremental: update hypothesis when new example seen
 - batch: hypotheses generated after considering a training set of n examples
- methods: BPNN, SVM, Bayes, k-NN, decision trees, boosting

Linear Regression

- simplest approach to estimating a function
- given data pairs (x,y)
- x may be a vector; assume y is a linear function of x
- estimate $y \approx h_{\theta}(x)$ where $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + ...$
- need to determine θ so as to minimize error, i.e., difference between $h_{\theta}(\mathbf{x})$ and y
- typically use Least Mean Squares (LMS)
- can often solve by linear algebra

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Polynomial Regression

- form of linear regression on which hypothesis is assumed to be a polynomial function of x
- given data pairs (x₁, y₁), (x₂, y₂), ..., (x_m, y_m)
- for simplicity, we'll assume x is a scalar
- assume y is a degree-d polynomial function of x
- estimate $y \approx h_w(x) = w_0 + w_1 x + w_2 x^2 + ... + w_d x^d$
- again, can solve for w with linear algebra

Minimizing Cost Function

- Sometimes, linear algebra solutions are too complex to solve for the parameters
- Instead, can try to minimize cost function by "navigating" the error contours
- Consider case of two parameters

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Gradient Descent

Where you start can lead to different solutions

Gradient Descent Too Slow

gradient descent needs infinitesimal steps
 this could take forever

Gradient Descent Too Fast

in practice, use a larger step size -- learning rate: α
 but too large a value leads to oscillations in error space

Local Minima

- in general, error surface is full of hills and valleys
- gradient descent can get trapped in local minimum
- solutions?

Gradient Descent just right

- Dampen oscillations by introducing a momentum factor γ e.g., $\Delta\theta(t+1) = \alpha \nabla J + \gamma \Delta\theta(t)$
- Bonus: This also helps avoid getting trapped in local minima

Fitting the Data with Linear or Polynomial Regression

(credit: Stanford ML course)

Same issue with logistic regression

(credit: Stanford ML course)

Overlearning

- don't want learning system to be overtrained
- Solution: partition data examples into three sets:

Data Set	Used for	Analogy with		
I				

Supervised Learning of a Decision Tree

Example A		Attributes									Goal
	Alt	Bur	Fri	Hun	Put	Price	Rain	Res	Туре	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thui	30-60	Nσ
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_{+}	Yes	No	Yes	Yes	Full	\$	No	No	Thui	10–30	Yes
X_{S}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	Nσ
<i>X</i> ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X 7	No	Yes	$N\sigma$	No	None	\$	Yes	No	Burger	0-10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
<i>X</i> 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	Nσ
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	Nσ
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

How about an LTA?

- one path for each training example
- going down path tests each attribute in turn
- leaf assigned the classification of example

Fixing the 2ⁿ problem

- form more compact representation
 - look for redundancy of attributes
 - but not always possible, e.g.,
 - parity function
 - majority function

Types of Learning Based on Information Available

- supervised learning:
 - given labeled sets of (x,y)
 - goal: minimize error on training (and testing) data
 - e.g., BPNN, SVM, Bayes, k-NN, decision trees, boosting
- reinforcement learning:
 - given actions and outcomes
 - goal: learn to maximize reward over long term
 - e.g., TD, Q-learning
- unsupervised learning:
 - only given x
 - goal: learn associations within (groupings of) the data
 - e.g., k-means, EM, PCA, SOM

Next Class

• Inductive Learning (Ch 18.3)