
ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?
Any θ is possible: continuum of hypotheses hθ

θ is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, c cherries and ℓ=N − c limes
These are i.i.d. (independent, identically distributed) observations, so

P (d|hθ) =
N∏

j=1
P (dj|hθ) = θc · (1− θ)ℓ

Maximize this w.r.t. θ—which is easier for the log-likelihood:

L(d|hθ) = logP (d|hθ) =
N∑

j=1
logP (dj|hθ) = c log θ + ℓ log(1− θ)

dL(d|hθ)

dθ
=

c

θ
− ℓ

1− θ
= 0 ⇒ θ =

c

c + ℓ
=

c

N

Seems sensible, but causes problems with 0 counts!
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Coin-toss games 

•  Imagine we have three coins, A, B, C 
•  If toss of first coin: 

•  A=heads, we then switch to coin B 
•  A=tails, we then switch to coin C 

•  q =  P(A=heads)  
•  p0 = P(B=heads) 
•  p1 = P(C=heads) 



P(Z=1) = q 

P(X1=1) = p0 

P(X1=1) = p1 

P(X2=1) = p0 

P(X2=1) = p1 



Flip the coins and observe… 

z x1 x2 
0 1 0 
1 0 0 
0 1 1 
0 0 1 
1 1 1 
0 0 0 
1 1 0 
0 0 1 
0 1 0 
0 0 0 

Given: 

What if you’re not given q? 



But what if we’re not shown z? 

z x1 x2 
? 1 0 
? 0 0 
? 1 1 
? 0 1 
? 1 1 
? 0 0 
? 1 0 
? 0 1 
? 1 0 
? 0 0 

Given only: 



Use a first guess q = q(0) 



With a guess of q(0) = 0.1, this gives 

z x1 x2 
0.1 1 0 
0.012195 0 0 
0.5 1 1 
0.1 0 1 
0.5 1 1 
0.012195 0 0 
0.1 1 0 
0.1 0 1 
0.1 1 0 
0.012195 0 0 

So let’s refine our guess: 



What happens over time? 



Expectation Maximization 

•  MAP & ML learning deal with fully observable cases 
•  what if data is incomplete or has missing values? 
•  e.g., medical records contain: 

•  health indicators 
•  symptoms 
•  but not the disease 

•  goal : assume the data comes from an underlying 
distribution; we need to guess the most likely 
(maximum likelihood) parameters of that model. 



Example: Learning a Multivariate 
Gaussian Distribution 

•  suppose we have 
spectra of 100,000 stars 

•  how many stars of each 
type (white dwarf, red 
giant, etc.) are there? 
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Learning a Multivariate Gaussian 
Distribution 
•  given a set of n data points (e.g., stars) 

 
whose attributes xi represent spectral 
intensities at f1 and f2: 

•  assume underlying distribution is MoG 
with k components 

•   each component Ci has a: 
•  wi = P(C = i) = weight or likelihood 
•  µi = mean 
•  Σi = co-variance 

•  goal: estimate parameters of each 
Gaussian distribution 

500 points sampled 
from model 

Gaussian mixture model 



Learning Mixtures of Gaussians (MoG) 

•  mixture distribution given by: 

•  if we knew which component generated each data point… 
•  we could solve for the Gaussian parameters directly 

•  or, if we knew parameters of each component… 
•  we could assign each data point (probabilistically) to a component 

•  our problem:  
•  we know neither! 

P(x) = P(x |C = i)
i=1

k

∑ P(C = i)



Let’s pretend we do!  (Expectation) 

•  pretend we know the parameters of the model 
(weights, means, and co-variance of each Gaussian) 

•  compute probabilities that each data point belongs to 
component Ci 

•  for convenience, define: 
•  equivalent to computing the expected values of a 

hidden “indicator” variable, Zij 
(Zij= 1 if data xj was generated by component Ci) 

)|( jij iCPp x==

=αP(x j |C = i)P(C = i)

€ 

pi = pijj
∑



Now find maximum likelihood of data 
given the expectation (Maximization) 

•  compute new model parameters based on the 
expectation 

 
•  maximizes the log likelihood of the data, given the 

expected values of the hidden indicator variables 

€ 

µi← pijj
∑ x j / pi

Σi ← pijj∑ (x j −µi )(x j −µi )
T

€ 

wi← pi



EM algorithm in a nutshell 

•  given a set of incomplete (observed) data 
•  assume observed data come from a specific model 
•  guess (or pretend we know) parameters for model 
•  repeat: 

•  use this to guess the missing value/data: 
infer probability that each data point belongs to each 
component  (expectation step) 

•  refit the components to the data: 
from the missing data and observed data, find the most likely 
parameters (maximization step) 

•  until convergence 



EM in general 

•  Let x be all the observed values 
•  Let Z denote all the hidden variables 
•  Let    be all the parameters for the probability model 

•  “expectation of the log likelihood of the completed data with respect to the 
distribution                    , which is the posterior over the hidden variables, given 
the data” 

•  “maximization of this expected log likelihood with respect to the parameters” 
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