
Evolutionary Computing 



Darwinian Evolution 

  A species consists of a number of 
individuals who live in an environment. 

  The environment may include various 
pressures on the population. 

l  External pressures: Predators, harsh climate 
(cold, arid, ...). 

l  Internal pressures: Intra-species competition 
for limited resources. 

l  Individuals more suited to the environment 
have an increased chance of survival, and 
hence have more time to reproduce, and 
pass their adaptations to their children. 

  “Survival of the fittest”,  “Diversity drives change” 



Example: The Peppered Moth 

l  The darker variety of the species was once an anomaly, at a 
disadvantage to the more prevalent pale variety (A). 
 
l  With the Industrial Revolution in Britain in the 19th Century, its 
habitat (Birch tree) became darkened with pollution (B), and its 
mutation became an asset for camouflage and therefore survival.  

A)‏ B)‏ 



Typical Behaviour of Evolution 

  Phases in optimising a 1-dimensional fitness landscape: 

l  Early Phase: 
 Quasi-random population distribution 

l  Mid-Phase: 
 Population around/on hills 

l  Late-Phase: 
 Population concentrated high on hills 



Evolutionary Computing 

  Biologically inspired, like neural networks. 
l  Turing, 1948: “genetic or evolutionary search”. 
l  Bremermann, 1962: “[optimisation] through evolution and recombination”. 
l  Holland, 1975: Introduces Genetic Algorithms 
l  Koza, 1992: Introduces Genetic Programming  

 
  Explore complex space where analytical solutions are not available:  

l   Discrete optimisation 
l   Discrete NP-hard problems (e.g., traveling salesman, job scheduling, etc. ) 

 
  Attributed features: 

  Not too fast, nor always optimal. 
  Good heuristic for combinatorial problems. 
  Many variants, e.g., reproduction models, operators. 



Genetic Algorithm (GA) 

l  evaluation (fitness function) of individuals 
l  selection (of parents) 
l  reproduction (crossover) 
l  mutation 



Caveat 

"GAs do not find the best solution, 
they find the first solution" 

 



l  Basic idea: To find a solution to a problem, throw a bunch of potential 
solutions at it, and create new guesses based on the best of those 
attempts. 
 
l  A population, π, is a set of individuals, πi, for i = 1..N . 

l  Each individual is a candidate solution. 
 

l  Individuals are encoded by genes Γj, for j = 1..G . 
l  Every possible solution can be encoded. 

  
  

Representation of Population 

  Ex. Find x that maximizes 
 
  

l  Phenotype (an individual)                    x = 412895 
Genotype  (its genetic code (G=20))      = 01100100110011011111  



Fitness Function

l  All members of a population are evaluated for 'fitness' according to 
some function, Φ: πi→ ℝ. 

  Φ is often just the function we're trying to maximise. 

  Otherwise, it can be a heuristic approximator to the problem. 

  Theoretically, Φ expresses how well an individual is adapted to an 
environment. 



Selection 

l  Giving the most-fit agents an increased chance of reproduction yields a 
stronger population in subsequent generations. 

l  At each iteration of the algorithm, we select and combine agents based 
on Φ, producing a new generation of N agents.  

l  Reproduction: 

l  usually (but not always) involves 2 distinct parents 

l  usually fatal to the parents (they do not survive to the next iteration) 

l  exception: Elitism: The strongest n individuals survive to the next generation 



Selection by Roulette Wheel 

l  For | π | = N individuals, πi  has probability                  of being 
selected   

l  Ex: 
       Φ(π1) = 103 
       Φ(π2) = 61 
       Φ(π3) = 48 
       Φ(π4) = 22 
       Φ(π5) = 13 
       Φ(π6) = 9 

 

l TOTAL FITNESS = 256 
 
π4 has a 22/256 ≈ 8.6% chance of being selected 
 

π1 

π2 

π3 π4 
π5 

π6 

€ 

φ(π i )
φ(π j )∑



Crossover 
l  Combine chunks of parental DNA to produce the new infant. 

l  For species with G genes, Γg , and 1-point crossover:   

l  Randomly select 0 < j < G as the crossover point 

l  Split parent genotypes at j. 

l  Create children by crossing tails over around Γj: 



Mutation 
l  For each new child, alter each gene, Γg , with mutation rate, pm. 

l  pm usually small, and proportional to (1 / | π |) or (1 / G). 

l  For genotypes of bitstrings, this involves merely switching the bit 
l  Γg = ( Γg + 1 ) mod 2 

l  This process drives change and diversity, and helps to avoid local 
maxima in the process. 

 
Original offspring 1   1101111000011110 
Original offspring 2   0101000100110110 
 
Mutated offspring 1   1100111000011110 
Mutated offspring 2   0101001100110100   

 



GA Summary 



A Genetic Algorithm(*) 

function Genetic-Algorithm( π, Φ ) returns individual σ 
 inputs: π; a population of N individual solutions 
   Φ; a fitness-function for individuals 

 
 repeat 
      π ' ← ∅ 
      for i from 1 to (N / 2) do 
     (x, y) ← Random-Select-Parents( π, Φ ) 
     (w, z)  ← Reproduce( x, y ) 
     if (small random probability) then (w, z) ← Mutate(w, z) ) 
     add (w, z) to π ' 
      π  ← π ' 
      σ ← Best( π, Φ ) 
 until Φ( σ ) > some threshold, or enough time has elapsed 
 return σ 
  

(*) : There are many variations. This is Simplified GA (SGA), popularised by (Holland, 73) 



Example: 8 Queens 

l  Representation:  
l  8 genes, where Γi = j ↔ (i,j) has a queen. 

l  88 ≈ 17 million possible individuals.  

l  Fitness Function: 
  Number of non-attacking pairs. 

  Best fitness: 

Φ(86427531) = 27 



8 Queens: Initialisation 

l  Initialise population: 
l  π1 = 24748552, π2 = 32752411, 
π3 = 24415124, π4 = 32543213. 

l  Determine fitness: 
l  Φ(π1) = 24,   Φ(π2) = 23,   Φ(π3) = 20,   Φ(π4) = 11. 

l  Total fitness = 24+23+20+11 = 78 

l  Selection: 
l  Assuming “Roulette Wheel” process... 

l  P(π1) = 24/78 = 0.31 → Range: [0, .31) 
P(π2) = 23/78 = 0.29 → Range: [.31, .61) 
P(π3) = 20/78 = 0.26 → Range: [.61, .87) 
P(π4) = 11/78 = 0.13 → Range: [.87, 1.0) 
 

Φ(24748552) = 24 



8 Queens: Reproduction 

l  Select Parents:  
l  Given   

(π1)→[0, .31) 
(π2)→[.31, .61)  
(π3)→[.61, .87) 
(π4)→[.87, 1.0) 

l  Randomly draw:  0.4012, 
0.1486, 0.5973 and 0.8129. 

l  Parents: (π2 + π1) and (π2 + π3) 
paired off randomly. 

l  Crossover: 
l  Single random crossover point. 

l  ex. Crossover(π2,π1) = 3 
 



Example: Optimisation 

l  Find the values for x and y that minimize 

   f(x,y) = x cos(x) + x y tanh(x y)+ y sin(y) 
 
 
 
 
 
 
 
 
 
 
 



Part II: Genetic Programming 



Intro: λ-Calculus and LISP 
l  λ-Calculus (Church & Kleene, 1936 

-  formal system describing all computable functions 

-  Functions and data are interchangeable. 

l  LISP: functional programming language implementing λ-Calculus 
-  Introduced by John McCarthy in an MIT memo in 1958. 

-  S-expressions represent program code in LISP:  
( <operator>   <param1>   <param2>   ... )  

(defun factorial (n) 
  (if (<= n 1) 
    1 
    (* n (factorial (- n 1))))) 



Why λ-Calculus for EC? 



Why λ-Calculus for EC? 
l  Individuals are effectively program trees that can be arbitrarily 
clipped and recombined, and evaluated to directly infer fitness. 

l  Child nodes from the parents in the previous slide: 



Artificial Life 

l  Definition: The process of creating synthetic 
biology on computers to study, simulate and 
understand living systems.  



Boids  
[Reynolds 87] 

l  Bat swarms and penguin flocks from “Batman Returns” 



Go Fish  
[Tu 94] 

l  Physically based animation combined with simple 
behavioural models 

https://www.youtube.com/watch?v=aP1_XkCdAaE 
https://www.youtube.com/watch?v=VpZ93n5QQuQ 



Cognitive Modeling  
[Funge 99] 

l  Language for describing character’s intentions, abilities, and 
reasoning process 

l  Allows for automated animation 



Philip K. Dick Android 
[Hanson, 2005] 

l  Putting together robotics, NLU, and the Turing Test 


