
Evolutionary Computing

Darwinian Evolution

  A species consists of a number of
individuals who live in an environment.

  The environment may include various
pressures on the population.

l  External pressures: Predators, harsh climate
(cold, arid, ...).

l  Internal pressures: Intra-species competition
for limited resources.

l  Individuals more suited to the environment
have an increased chance of survival, and
hence have more time to reproduce, and
pass their adaptations to their children.

  “Survival of the fittest”, “Diversity drives change”

Example: The Peppered Moth

l  The darker variety of the species was once an anomaly, at a
disadvantage to the more prevalent pale variety (A).

l  With the Industrial Revolution in Britain in the 19th Century, its
habitat (Birch tree) became darkened with pollution (B), and its
mutation became an asset for camouflage and therefore survival.

A)‏ B)‏

Typical Behaviour of Evolution

  Phases in optimising a 1-dimensional fitness landscape:

l  Early Phase:
 Quasi-random population distribution

l  Mid-Phase:
 Population around/on hills

l  Late-Phase:
 Population concentrated high on hills

Evolutionary Computing

  Biologically inspired, like neural networks.
l  Turing, 1948: “genetic or evolutionary search”.
l  Bremermann, 1962: “[optimisation] through evolution and recombination”.
l  Holland, 1975: Introduces Genetic Algorithms
l  Koza, 1992: Introduces Genetic Programming

  Explore complex space where analytical solutions are not available:

l  Discrete optimisation
l  Discrete NP-hard problems (e.g., traveling salesman, job scheduling, etc.)

  Attributed features:

  Not too fast, nor always optimal.
  Good heuristic for combinatorial problems.
  Many variants, e.g., reproduction models, operators.

Genetic Algorithm (GA)

l  evaluation (fitness function) of individuals
l  selection (of parents)
l  reproduction (crossover)
l  mutation

Caveat

"GAs do not find the best solution,
they find the first solution"

l  Basic idea: To find a solution to a problem, throw a bunch of potential
solutions at it, and create new guesses based on the best of those
attempts.

l  A population, π, is a set of individuals, πi, for i = 1..N .

l  Each individual is a candidate solution.

l  Individuals are encoded by genes Γj, for j = 1..G .
l  Every possible solution can be encoded.

Representation of Population

  Ex. Find x that maximizes

l  Phenotype (an individual) x = 412895
Genotype (its genetic code (G=20)) = 01100100110011011111

Fitness Function

l  All members of a population are evaluated for 'fitness' according to
some function, Φ: πi→ ℝ.

  Φ is often just the function we're trying to maximise.

  Otherwise, it can be a heuristic approximator to the problem.

  Theoretically, Φ expresses how well an individual is adapted to an
environment.

Selection

l  Giving the most-fit agents an increased chance of reproduction yields a
stronger population in subsequent generations.

l  At each iteration of the algorithm, we select and combine agents based
on Φ, producing a new generation of N agents.

l  Reproduction:

l  usually (but not always) involves 2 distinct parents

l  usually fatal to the parents (they do not survive to the next iteration)

l  exception: Elitism: The strongest n individuals survive to the next generation

Selection by Roulette Wheel

l  For | π | = N individuals, πi has probability of being
selected

l  Ex:
 Φ(π1) = 103
 Φ(π2) = 61
 Φ(π3) = 48
 Φ(π4) = 22
 Φ(π5) = 13
 Φ(π6) = 9

l TOTAL FITNESS = 256

π4 has a 22/256 ≈ 8.6% chance of being selected

π1

π2

π3 π4
π5

π6

€

φ(π i)
φ(π j)∑

Crossover
l  Combine chunks of parental DNA to produce the new infant.

l  For species with G genes, Γg , and 1-point crossover:

l  Randomly select 0 < j < G as the crossover point

l  Split parent genotypes at j.

l  Create children by crossing tails over around Γj:

Mutation
l  For each new child, alter each gene, Γg , with mutation rate, pm.

l  pm usually small, and proportional to (1 / | π |) or (1 / G).

l  For genotypes of bitstrings, this involves merely switching the bit
l  Γg = (Γg + 1) mod 2

l  This process drives change and diversity, and helps to avoid local
maxima in the process.

Original offspring 1 1101111000011110
Original offspring 2 0101000100110110

Mutated offspring 1 1100111000011110
Mutated offspring 2 0101001100110100

GA Summary

A Genetic Algorithm(*)

function Genetic-Algorithm(π, Φ) returns individual σ
 inputs: π; a population of N individual solutions
 Φ; a fitness-function for individuals

 repeat
 π ' ← ∅
 for i from 1 to (N / 2) do
 (x, y) ← Random-Select-Parents(π, Φ)
 (w, z) ← Reproduce(x, y)
 if (small random probability) then (w, z) ← Mutate(w, z))
 add (w, z) to π '
 π ← π '
 σ ← Best(π, Φ)
 until Φ(σ) > some threshold, or enough time has elapsed
 return σ

(*) : There are many variations. This is Simplified GA (SGA), popularised by (Holland, 73)

Example: 8 Queens

l  Representation:
l  8 genes, where Γi = j ↔ (i,j) has a queen.

l  88 ≈ 17 million possible individuals.

l  Fitness Function:
  Number of non-attacking pairs.

  Best fitness:

Φ(86427531) = 27

8 Queens: Initialisation

l  Initialise population:
l  π1 = 24748552, π2 = 32752411,
π3 = 24415124, π4 = 32543213.

l  Determine fitness:
l  Φ(π1) = 24, Φ(π2) = 23, Φ(π3) = 20, Φ(π4) = 11.

l  Total fitness = 24+23+20+11 = 78

l  Selection:
l  Assuming “Roulette Wheel” process...

l  P(π1) = 24/78 = 0.31 → Range: [0, .31)
P(π2) = 23/78 = 0.29 → Range: [.31, .61)
P(π3) = 20/78 = 0.26 → Range: [.61, .87)
P(π4) = 11/78 = 0.13 → Range: [.87, 1.0)

Φ(24748552) = 24

8 Queens: Reproduction

l  Select Parents:
l  Given

(π1)→[0, .31)
(π2)→[.31, .61)
(π3)→[.61, .87)
(π4)→[.87, 1.0)

l  Randomly draw: 0.4012,
0.1486, 0.5973 and 0.8129.

l  Parents: (π2 + π1) and (π2 + π3)
paired off randomly.

l  Crossover:
l  Single random crossover point.

l  ex. Crossover(π2,π1) = 3

Example: Optimisation

l  Find the values for x and y that minimize

 f(x,y) = x cos(x) + x y tanh(x y)+ y sin(y)

Part II: Genetic Programming

Intro: λ-Calculus and LISP
l  λ-Calculus (Church & Kleene, 1936

-  formal system describing all computable functions

-  Functions and data are interchangeable.

l  LISP: functional programming language implementing λ-Calculus
-  Introduced by John McCarthy in an MIT memo in 1958.

-  S-expressions represent program code in LISP:
(<operator> <param1> <param2> ...)

(defun factorial (n)
 (if (<= n 1)
 1
 (* n (factorial (- n 1)))))

Why λ-Calculus for EC?

Why λ-Calculus for EC?
l  Individuals are effectively program trees that can be arbitrarily
clipped and recombined, and evaluated to directly infer fitness.

l  Child nodes from the parents in the previous slide:

Artificial Life

l  Definition: The process of creating synthetic
biology on computers to study, simulate and
understand living systems.

Boids
[Reynolds 87]

l  Bat swarms and penguin flocks from “Batman Returns”

Go Fish
[Tu 94]

l  Physically based animation combined with simple
behavioural models

https://www.youtube.com/watch?v=aP1_XkCdAaE
https://www.youtube.com/watch?v=VpZ93n5QQuQ

Cognitive Modeling
[Funge 99]

l  Language for describing character’s intentions, abilities, and
reasoning process

l  Allows for automated animation

Philip K. Dick Android
[Hanson, 2005]

l  Putting together robotics, NLU, and the Turing Test

