IEEE Instrumentation and Measurement
Technology Conference
Ottawa, Canada, May 19-21, 1997

Real-Time Compensation of Instrument Transformer
- Dynamics Using Frequency-Domain Interpolation

'Techniques

Benoit Boulet, Member, IEEE, Laszlo Kadar, Member, IEEE, James Wikston, Member, IEEE
Hatch Associates Ltd.
2800 Speakman Drive, Sheridan Science and Technology Park,
Mississauga, Ontario, Canada L5K 2R7
E-mail: boulet@hatchcos.com, kadar@hatchcos.com, jwikston@hatchcos.com

Abstract— The dynamics of current and voltage trans-
formers often limit the accuracy of measurements in high-
voltage power systems., These dynamics may not be well
known, but frequency-response data obtained on the in-
strument transformer may be available for a finite set of
frequencies. A compensating digital filter that approxim-
ately inverts the instrument transformer’s frequency re-
sponse is calculated using frequency-domain interpolation
techniques. The Power Quality Analyser makes use of the
compensating filter technique for improved accuracy of its
real-time power quality calculations and analyses.

I. INTRODUCTION

HE effect of field instrument transformers on har-
monics, power, power factor, unbalance and flicker
measurements accuracy has been reviewed as part of the
development of a new real-time Power Quality Analyser
(PQA) for arc furnace operations and utilities. The over-
all measuring system performance is determined in part
by the accuracy of all the transducers and transformers in
the signal path.
The main components of a typical measuring system as
shown in Fig. 1 are:
o field instrument transformers
¢ step-down voltage transformers (VTs) and current
transformers (CTs) used to interface the sampling
device with the field transformers without interrupt-
ing production
+ sampling device and real-time analysis system
Accuracy requirements and specifications of field trans-
ducers and instrument transformers were discussed in [1].
In particular, it was pointed out that at frequencies higher
than 60 Hz, the CTs and VTs may introduce gain and
phase errors. Therefore, the measurement of higher sys-
tem harmonics may be inaccurate. This paper describes
a technique to compensate for the effects of instrument
transformers dynamics in a computer-based power qual-
ity measurement system, the PQA.
The real-time compensation technique treated here was
first introduced in [1]. A detailed procedure for compens-
ating digital filter design is given. The dynamics of CTs
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Fig. 1. Diagram of a Typical Power Quality Measurement System

and VTs may not be well-known, but frequency-response
(FR) data obtained on them may be available for a fi-
nite set of frequencies. Compensating filters that approx-
imately invert the instrument transformers frequency re-
sponses are calculated using frequency-domain interpola-
tion techniques. The main idea is to interpolate the in-
verse of the complex FR data with a proper, stable trans-
fer function on the imaginary axis. Then this transfer
function can be implemented as a digital filter so that ap-
proximate cancellation takes place and the resulting com-
bined FR is close to unity magnitude and zero phase in
the frequency band of interest. The interpolating trans-
fer function is mapped into the z-domain via the bilin-
ear transformation with the appropriate sampling period.
The resulting discrete-time filter can be implemented as a
difference equation or as a first-order, discrete-time state-
space matrix equation in the measuring system’s software
performing real-time computations. :
Nevanlinna-Pick interpolation theory is described and
used to invert the frequency response of the instrument
transformer at frequencies of interest in the measured
periodic signal, such as significant harmonic frequencies.
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The calculated interpolating filter is guaranteed to be
stable. In case its order is too large for practical imple-
mentation, model reduction techniques such as Moore’s
balanced truncation [2] or frequency-weighted optimal
Hankel-norm approximation [3], [4] can be used to reduce
the order of the filter. The exact inversion property at the
sample frequencies would then be lost, but lower-order
filters with reasonably accurate frequency responses may
nevertheless be obtained.

The Power Quality Analyser developed by Hatch As-
sociates Ltd. makes use of the compensating filter tech-
nique for improved accuracy of its calculations, including
real-time harmonics, power, unbalance, and flicker data
calculations. The PQA VTs’ frequency responses needed
for filter design were measured. Experimental sinusoidal
voltage data measured with the PQA are used to compare
results with and without the VT compensating filters. It
is shown that the digital filters can significantly reduce the
measurement errors.

II. DYNAMICS OF INSTRUMENT TRANSFORMERS AND
ANTIALIASING FILTERS

The dynamics of instrument transformers can be char-
acterized by frequency-response data obtained from equi-
valent circuit models or direct measurements. To develop
an accurate compensator, the complex FR of the instru-
ment transformer must be obtained. One way to get the
FR is to measure it directly at N frequencies. For in-
stance, define the complex FR data points obtained on an
instrument transformer as:

Byom Yol Ly (1)

Vin (]wi)
where the input and output signals (currents or voltages)
Vin(jwi) and vyt (jw;) are complex-valued.

Analog antialiasing filters are used at the inputs of the
PQA to attenuate high-frequency noise corrupting the sig-
nals before sampling. The magnitudes of these 4**-order
elliptic antialiasing filters are quite flat in the passband,
but their phases are significant. Elliptic filters have stand-
ard FRs; it is easy to compute the data points at the fre-
quencies w;’s:

i::F(jw,-), i=1,...,N, (2)

where F(s) is the filter’s transfer function.

Finally, the A/D cards used in the PQA exhibit a short
delay of typically 10 us between each channel sampled in
burst mode. Ideally, all channels would be sampled at the
same time. Since we want to bring all channel samples to
the same sampling instant, these delays in sampling can
be thought of as time advances. For example, if sampling
starts at channel 0, then channel 1, and assuming both
channels sample the same signal, then if both points are to
represent the signal at the exact same sampling instant,

the sampled signal of channel 1 will appear to lead the
sampled signal of channel 0. Hence, digital compensation
can be achieved by introducing a delay of 10 ps on chan-
nel 1. In light of the above, the FR data at frequencies
{w; }}V.,, corresponding to a 10 ps advance, can be defined
as:
§i = ef07w =1 N. (3)
All of these data points can be combined to form a
global FR of the signal path from its source to the input
of the A/D card:

¢i = Bithidy, i=1,...,N. (4)

Our goal 1s to build a stable compensating filter whose
FR interpolates the points {¢; '}, and is “nice” and
“smooth”. Since we are dealing with an AC power supply,
frequencies of interest will be its fundamental frequency
(e.g., 60 Hz in North America, 50 Hz in Europe) and its

harmonic frequencies.

III. COMPENSATING FILTER DESIGN USING
NEVANLINNA-PICK INTERPOLATION

A. Problem Formulation

One way to design filters that interpolate given FR
data points is to set up a model-matching problem and to
use Nevanlinna-Pick (NP) interpolation theory to solve it.
The model-matching problem is standard in #H ., control
theory as it arises in the design of Ho,-optimal control-
lers [5]. The model-matching problem is also ubiquitous
in broadband equalization [6].

We want to design a stable discrete-time filter that inter-
polates the inverse of the FR data {¢; 1}, at the complex
points on the unit circle (assuming the bilinear transform-
ation is used): {ejg" = %—f——%—j—:—i ci=1,. ..,N}, where T}
1s the sampling period. Wg will first design a continuous-
time filter interpolating ¢; ! at o + jw; in the open right-
half plane for a given o > 0, shift this filter to the left
in the complex plane by « so that interpolation is now
on the imaginary axis, and finally map it to a discrete-
time filter via the bilinear transformation. Define Hoo to
be the space of stable transfer functions bounded on the
jw-axis. Let RHo and CHoo be the subspaces of Hes
composed of real-rational and complex-rational functions
respectively. The co-norm of a function g in any of these
spaces is defined as its maximum gain on the jw-axis:

lg(s)lleo = sup lg(jw)I. (3)
weR

Let g(s) € RH be the filter to be designed,
m(s) € RHo be a “model” transfer function with de-
sired smoothness properties on the imaginary axis and
that roughly interpolates the data pairs (jw;,é; 1), and
w(s), w™l(s) € RHc be a weighting function. Then the
problem to be solved can be formulated as follows:
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Problem I: Design a filter g(s) € RH.o such that
(i) g(jwi) = ¢7%, i=1,...,N and

(1) lw(g — m)|| s minimized.

The minimization of {}w(g — m)|| implies that the res-
ulting g(s) will be close to m(s) on the jw-axis, especially
at those frequencies where |w(jw)| is large. Boundary NP
interpolation theory provides a solution to this problem
in CH oo, and we will see later how to use this solution to
compute a function in RH . satisfying the conditions of
Problem I.

Problem I can be recast into the following simplified
problem which is very close to the classical NP interpola-
tion problem:

Problem II: Find a function q(s) € CH such that
() a(jws) = w(jwi)lg;7 " = m(jews)], i=1,...,N and

(%1) llgl|co ts minimized.

Once a ¢(s) € CH s solving Problem IT has been com-
puted, it is a simple matter to obtain a real-rational func-
tion gr(s) € RHo that also satisfies conditions (i) and
(ii). This is done by computing the “real part” of ¢(s) as
follows:

anls) = 3la(e) +a(s")"], (©

where for a complex number s, s* denotes its conjugate
(conjugate transpose for matrices). If we let (A4, B, C, D)
be a state-space realization of ¢(s), then gr(s) is given by:

-1

wo) =Ry + B (s1-[ 5 4 ]) [ & ]

(7)
The state-space realization in (7) is still complex, but the
resulting transfer function has real coefficients. A real
state-space realization can be computed if desired. Once
qr(s) has been calculated, it is a simple matter to get
g(s) = wl(s)gr(s)+m(s). The resulting g(s) isin RH e
as required. In general, the order of g(s) will be less than
or equal to 4N + order[w(s)] + order[m(s)].

B. Solution Using NP Interpolation Theory

The classical NP interpolation problem in the right-half
plane scaled with a constant v > 0 can be formulated as
follows (classical result is for v = 1):

Problem 111: Given a set of M complex numbers
{y~'b; €C : |y~'b;| < 1,i=1,...,M} and M distinct
complex numbers in the open right-half plane
{a; €C : Re{a;} >0,i=1,..., M}, Find an interpolat-
ing function q(s) € CHo such that

(1) q(a;) =y~ b;, i=1,...,M and

() llglleo < 1.

Pick’s famous theorem provides a simple way to check if

Problem III has a solution. Define the Hermitian matrices

1
a,-+a;-‘

bib

A= n *jl
a; a,
HERIR I N ES T ¥

, B:=
i,j=1,...,.M

Theorem 1: There exists an interpolating function sat-
isfying Problem III if and only if the Pick matrix
Q := A —v7%B is positive semidefinite.

A well-known related result [5] states that the minimum
achievable v, call it vop¢, such that Problem III has a solu-
tion is equal to the square root of the largest eigenvalue of
A~ZBA™%, where A~% is the positive definite inverse of
A% which satisfies A = A3 A%. The corresponding func-
tion Yop¢¢(s) is the minimum-norm function interpolating
the b;’s.

When @ is positive semidefinite, one can construct an
interpolating function ¢ using Nevanlinna’s algorithm [5],
[7]. But before this algorithm can be described, a few
definitions are in order. Let D be the open unit disk and
0D be the unit circle. A Mébius function has the form

z—b
Mle) = T

where |b] < 1.

Some properties of M, are: My € CHoo; |Mp(z)| =1
on dD; M, maps D onto D and 8D onto 8D; and
Mb"1 = M_y. An all-pass function is defined as follows:

S—a
s+ a*’

Ag(s) == Re{a} > 0.

Note that for every w, |4,(jw)| = 1.

Nevanlinna’s Algorithm

The algorithm presented here is adapted from [5]. It is
based on the fact that for M = 1 with the data a and b,
all solutions are given by

{4(s) : q(s) = M_p[q1(5)Aa(s)], 1 € CHoo, |lqalloe < 1(}8),

and the case of M points reduces to the case of M — 1
points. Mathematical induction can then be used to give
a recursive solution to the general case of M- data points.
The algorithm consists of two stages. The first stage can
be looked at as data formatting for successive transformed
problems with 1 point, then 2 points, etc., up to M points
to be solved, and the second stage uses these data to solve
the problems until the solution emerges with the M data
points. Here is a succinct, but complete description of the
algorithm.

Stage 1
Let b? := b;, the original data points. Compute the array
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of complex numbers

by by b3 - by
BBl . bl
b3 b2,
i
as follows:
My (B
et i=1,...,. M—-1,j=i+1,.... M.
bJ Aa,(a]‘) ) ¢ ’ ’ y J T+ 3 ’
(9)
Stage 2 ‘
Pick qu(s) € CHeo to be a “seed” function with

[lgamlloc < 1. Then compute successively

ga-1(s) = M_,m-i[qar(s)Aan ()],
gu-2(s) = M_pm-2[qar—1(8)Aar—, (5)],
qo(s) = M_polg1(s)Aq, (5)].

The solution to Problem III is ¢{s) = go(s).
We can now detail the design procedure to obtain digital
compensating filters.

Filter Design Procedure

Step 0:  Select a “model” function m(s) € RH o that
approximately interpolates the points {¢; 11N | on the jw-
axis and that has a smooth FR with desired properties.
Then select a weighting function w(s) € RH e such that
its inverse is stable and proper, and whose magnitude on
the jw-axis appropriately weights regions where deviation
between the FRs of the filter to be designed and m(s)
should be small.

Step 1: Measure the FRs, compute the ¢;’s and define
the complex numbers
pi = w(jwi)[é7 " — mjwi)] .
Select a positive number «, let w; = —w;_n for
1= N+1,...,2N and then form the sets
A = {oy=0a+jw :i=1,...,2N} |
By = {bl :bl=p;,i=1,...,N,
b;-:pi_N,i:N-}—l,...,QN} .
Let M :=2N.

Step 2: Compute the minimum norm 7,p; achievable in
Problem III with the data in A and By. Then, scale the
data in By and define a new set B as follows:

B = {b; : bi = v;,1b}, b} € Bo} .
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Step 8:  Use Nevanlinna’s algorithm with the data sets
A and B to compute a proper, stable complex-rational
interpolating function ¢(s). Note that ¢(s) interpolates
the elements of B at the a;’s on the line Re{s} = a which
lies in the right-half plane.

Step 4: Compute the real-rational function ¢g(s) corres-
ponding to ¢(s) using (7). Shift the function to the left
in the complex plane: §gr(s) := qr(s + «). Note that by
the maximum modulus theorem, ||¢r(s)||0 < ||9R(S)]lco-
Moreover, the proper, stable, real-rational function §g(s)
interpolates p; at +jw; and all of its poles lie to the left
of the line Re{s} = —a.

Step 5: Compute g(s) = w™!(s)qr(s) + m(s). This is
the full-order continuocus-time filter’s transfer function. If
the order is not a concern, discretize the filter using, e.g.,
the bilinear transformation:

f(z) = g(s)l,=

2 &1
Ty ZF1

Step 6: If the order of g(s) is too high, use a model
reduction technique until a satisfactory tradeoff between
model order and fit of the FR on the data is achieved.
Then discretize the filter as in Step 5.

IV. EXPERIMENTAL RESULTS WITH THE POWER
QUALITY ANALYSER

A. Filter Design

A frequency-response experiment from 60 Hz to
2100 Hz (35" harmonic) was performed on a 120 V/3.5 V
VT used with the PQA. Then, eight points of that FR
were selected: at the 60 Hz fundamental frequency, and
at its harmonics: 3, 5, 9, 15, 21, 27, 33, to design an NP
filter. The FR data points obtained contained the effect of
the 10 ps delay between channels 0 and 1 of the 8-channel
A/D card used for the experiment. It was found that the
VT has a flat magnitude over the frequency band of in-
terest, but it has a positive phase of up to four degrees
around 2000 Hz. Antialiasing filters were not yet available
when this research was conducted.

The digital filter was implemented for channel 7 of the
PQA which measured the output voltage of the VT, while
the input signal to the VT was directly measured on chan-
nel 0. Hence, an additional 60 ps advance between chan-
nels 1 and 7 on the A/D card accounted for the burst mode
rate.

The combined PT FR data and phase lead effect of the
burst mode rate were then used to design an NP com-
pensating filter using the procedure outlined above. The
selected model and weighting functions were:

34.72
m(s) = : , (10)
(40(1)003 + 1)(300100252 + 320867;)5 +1)
.00001s+ 10
wls) = Tgooter1 (11)



Bode Plot of Reduced-Order Discretized Compensating Filter
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Fig. 2. Bode Plot of Reduced 4¢"-order Discrete-Time Compensat-
ing Filter

Then, Steps 1 to 4 of the design procedure were car-
ried out in Matlab?™ using the u-Analysis and Synthesis
Control Toolbox [8]. The resulting continuous-time real-
rational filter g(s) was of the 36' order, as expected.
In Step 5, a 4‘P-order filter was obtained by using the
frequency-weighted optimal Hankel-norm approximation
technique [4]. Such a large reduction in the order was
achievable because of the smoothness of the FR data. Fi-
nally, this filter was discretized via the bilinear transform-
ation with a sampling frequency of 10,000 Hz and a pre-
warping frequency of 1800 Hz. Its Bode plot is shown in
Fig. 2 along with the interpolated inverse FR data points

{¢z_1 18=1‘
B. Experiments

The compensating filter was implemented in the PQA
as a state-space difference equation with the “A” matrix
in block-diagonal form. A sinusoidal input voltage of fre-
quency 880 Hz (between the 14** and the 15'* harmon-
ics) was applied to channel 0 of the PQA and to the VT
whose output was connected to channel 7. The signals
were sampled and filtered at a sampling rate of 10 kHz
in the PQA. Fig. 3 shows a comparison of the unfiltered
and filtered digital signals, where the dashed curve is the
measured output voltage of the VT, and the solid curve is
the input voltage. The time reference is taken to be when
channel 0 is sampled. It is seen that the phase lag of the
filter shifts the signal to the right and brings it on top of
the input signal, as desired.

Another test was conducted using an 1800 Hz sinusoidal
voltage (the 30** harmonic). The results in Fig. 4 clearly
show the benefits of the compensating filter even for fre-
quencies relatively close to the Nyquist frequency. The
phase lead observed in the top plots of Fig. 3 and 4 is
detrimental to calculations that are sensitive to phase er-

Measured 880Hz2 sinusoidal voltage without (top) and with (bottom) compensating filter
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Fig. 3. Measured 880 Hz sinusoidal input and output of VT without
and with filtering (dashed line: output of VT)

Measured 1800Hz sinusoidal voltage without {top) and with {(bottem) compensating filter
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Fig. 4. Measured 1800 Hz sinusoidal input and output of VT
without and with filtering (dashed line: output of VT)

rors between current and/or voltage signals, such as active
and reactive power, and 3-phase system unbalance calcula-
tions. An investigation of the sensitivity of different power
quality calculations to the dynamics of instrument trans-
formers and data acquisition systems will be presented in
a forthcoming paper.

V. CONCLUSION

A frequency-domain compensating filter design tech-
nique based on the model-matching problem and
Nevanlinna-Pick interpolation theory was presented. Ex-
perimental frequency-response data of instrument trans-
formers and sampling devices are used to design real-time
digital filters that interpolate the inverted FR data. These
filters can compensate for dynamics affecting the signals
prior to sampling. An important application for these fil-
ters is in high-voltage power quality measurements where
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small phase or magnitude errors between signals can have
a significant effect on computed quality measures. Com-
pensating filters were implemented in the Power Qual-
ity Analyser to improve the accuracy of its calculations,

which include real-time harmonics, power, unbalance, and
flicker.
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