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Robust Gust Load Alleviation
for a Flexible Aircraft
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INTRODUCTION

Gust load alleviation (GLA) systems can be used to reduce,
the effects of wind gusts on vertical acceleration of aircraft.
Their purpose is to reduce airframe loads and improve passenger
comfort. In this paper, the longitudinal dynamics of the B-52
bomber are studied (Mclean, 1990). The dynamic model of the
aircraft includes structural flexibility. Such a model is more
realistic than a rigid-body model, but it can also make feedback
control design for gust load alleviation more challenging.

We present H,, and u controller designs for a model of the
B-52 aircraft with flexible modes. The gust is generated with the
Dryden power spectral density model. This kind of model lends
itself well to frequency-domain performance specifications in
the form weighting functions. The H and u controllers are
shown to meet the desired nominal performance and the robust
performance specifications with reasonably small control
surface deflection angles. Previous research on GLA control
systems reported in References 3, 5 and 7 take approaches
different to ours, notably LQG and H, for a rigid-body aircraft.

GUST MODEL

Two classical analytical representations for the power spectral
density (PSD) function of atmospheric turbulence were given
by Von Kérmén and Dryden (Mclean, 1990). As the Dryden
PSD function has a simpler form than Von Karmén’s, we chose
to use the former. It can be written as:
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where:

o,,1s the RMS vertical gust velocity (m/s),
L, is the scale of turbulence (m), and

*Centre for Tntelligent Machines U, is the aircraft trim velocity (m/s).
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At h>580 m (1750 ft), L, = 580 m,
At h<580m,L, = h m.

For thunderstorms, at any height:
L,=580m (1750 ft), o, = 7 m/s (21 {t/s).

Gust signals have to be generated with the required intensity,
scale lengths and PSD functions for some given flight velocity
and height. In order to generate these gust signals, a noise
source with PSD function ® (w) = 1 in the frequency band of
interest is used to provide the input signal to a linear filter
G, (s) chosen such that the squared magnitude of its frequency
response is the PSD function @ (w). The gust generator setup is
as follows:

Linear filter

n(t) Wei ()

G, (s)

Figure 1.
Gust signal generator.

where n(f) ~ N(0,1) is a Gaussian white noise process of unit
intensity and zero mean, and W, () s the random continuous
vertical gust, so that, formally, 1(t) = G, n. The PSD of the
output signal is related to the PSD of the input signal as follows:

D (0) = |G (jo) P (o) =G (jo) (2)
An expression for the Dryden filter can be found through
spectral factorization of @, (w), which yields “
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A proposed alternative use of the Dryden model is to
consider the noise n to be any deterministic finite-energy signal
in N :=={ne%[0,%):||n|l,=1}. The gust signal lives in i
W={G n : neN } CH[0,%) and its energy is bounded by

2
vl <lG.1 =

Furthermore, such signals taper off at infinity in the time
domain. Hence, they may be more representative of real wind
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gusts acting on an aircraft passing through a turbulence.
Although the stochastic nature of the signal is lost, the resulting
set of bounded-energy gust signals can be used for a worst-case
H, design, which is desirable in a safety-critical application
such as GLA.

FLEXIBLE AIRCRAFT MODEL

The short-period approximation for the rigid-body motion of
the B-52 aircraft is considered. The aircraft’s rigid-body
dynamics equations are augmented by adding to the state
variables a set of generalized coordinates associated with the
normal bending modes. Structural displacement was considered
small compared to the whole aircraft structure. The j* flexible
mode is represented by the following second-order linear
constant-coefficient differential equation in terms of its modal
coordinate 7

i, +26,00, +0,'n,=p,9, @)
where  , w;, p; are the damping ratio, frequency and gain of
the j* ﬂex1ble mode and ¢, is its corresponding generalized
force. Thus, the rigid aircraft dynamlcs may be augmented with
pairs of first-order equations corresponding to each flexible
mode considered. Five structural flexible modes were
considered significant and were kept in the longitudinal
dynamic model of the B-52 aircraft (Mclean, 1978).

The control inputs for the longitudinal motion are the
deflection angles (in radians) of the elevator §, and the
horizontal canard 8, . The longitudinal dynamics of the flexible
aircraft in terms of the state variable representation is:

x(t) = Ax(t)+ Bu(t) + B,w,(t)

3(t) = Cx(t) + Du(?)

®)

where x(f)eR" is the state vector :
! =[a g n, N N5 s My ;Mg Ty Ty Thal, u()eR

is the control vector: u = [8,, §,.]  (radians), y(0)eR is the
vertical acceleration (g), w (z)e[R3 1s the vertical gust velocity at
three stations (m/s) , a(t)eR is the angle of attack (radians) and
g(H)eR is the pitch rate (radians/s).

The form of the A matrix in state-space Equation 5 shows the
couplings between the aircraft’s flexible structure and rigid-
body dynamics:

Arr Ara
Aar
where A4, are the rigid-body terms, 4,, the rigid/aeroelastic
the aeroelastic/rigid terms, and A, the structural

(6)

Aaa
terms, A
ﬂex1b111ty terms. The two eigenvalues of 4 corresponding to the
rigid-body mode are A , = -1.803* j 2.617. The five flexible
modes are listed in Table 1.
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Table 1.
Flexible modes.
Mode no. 1 2 3 4 5
o, (rd/s) 7.60 15.22 1973 | 2024 | 3829
s 0.393 0.056 | 0011 0.067 | 0.023

Input terms associated with the effects of wind gust acting at
three different body stations are also included in Equation 5.
They appear as three different gust signals Wyi> W, and w s
acting in the longitudinal dynamic equations. Thus, the gust
vector is defined as Wy =Wy Wy Wal ™.

The second and third gust signals Wy, and w; are time-
delayed versions of W, The second gust is delayed by a time
71 = Up/x; = 0.06 s, where x, is the distance from the first body
station, which encounters the gust first. The third input is
delayed by time 7, = Uy/x, = 0.145 s. First-order lags are used
to model the delays for simplicity, but Padé approximations
could be used as well. The formal generation of the gust vector
is shown in Figure 2.

.

H s - OPTIMAL CONTROL

Problem Setup

A block diagram of the closed-loop gust alleviation design
problem with weighting functions is shown in Figure 3 below:
where wg(t)e[R3 is the gust disturbance, w, (9)eR is an
acceleration measurement noise, » = 0 is the vertical
acceleration setpoint, z,(f)eR is the weighted measured error,
and z,()eR? is the weighted controller output. The plant
transfer matrix G(s) mapping [u ng]T to y is given by:

ooy _[A1BB]

Dryden Filter
n i

—» G, () —>

> ! __>w”2
0.06s+1
1 WA,3 »
> o14ss+1 |
Figure 2.

Gust signals at three body stations.

The signal w,, is a small disturbance that has a role to play
in regularizing the H,, design problem. It can also be seen as a
real measurement noise. Its amplitude is specified by e = 10~as
w, is assumed to have a maximum amplitude of 1. For
convenience, we will use the notation T,=x+>y for closed-

loop transfer matrices mapping signal x to signal y.

WEIGHTING FUNCTIONS FOR NOMINAL
PERFORMANCE

Choosing o,, = Tm/s, L, = 580m in the Dryden model, we
obtain a gust that has most of its power concentrated in the
frequency band [0.1, 6] Hz. The specification is that our controller
has to be able to regulate the vertical acceleration in this interval
with an amplitude attenuation of at least 500 (-54 dB).

The closed-loop vertical acceleration of the aircraft can be
written in terms of the gust vector w . and the disturbance w, as
follows:

Figure 3.
Setup for H control.
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T w (8)

Y= Wey g+TwnyWn

where T, , and T,, , are the transfer matrices mapping w, and
w, to y respectively. Thus, the controller has to minimize
||ngy(jw)|| and ||T,, ,(jo)|| over [0.1,6] Hz. The gust alleviation
performance specification on ||T wg W jw)|| can be enforced
through the use of a weighting function W;(s) of amplitude at
least 500 over [0.1, 6]Hz , as long as we get || W1 Tw )l with the
controller K, which implies

17, , o) I, (je) [ ®

The weighting function is

W (s) = —2 (1)
a,s+1

with k; = 500, a; = 0.05. A plot of |W( jw)|" is shown in
Figure 5.

+——
P(s)

——p  K(s)

Figure 4.
Standard setup for H, control,

Figure 5.

Achieved performance.
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The controller outputs consist of deflection angles (in radians)
of the aircraft’s elevators and horizontal canards. In order to
make sure that these angles will remain within acceptable limits,
we took the output of the controller u as one of the controlled
variable z,. Define the input vector w: = [ng w,]". The use of a
suitable weighting function W, on u such that ||W,T, ||, <1 in
closed loop minimizes actuator travel while meeting the other
performance specification. The weighting function W, is a
diagonal transfer matrix

i

W,
so that the above H, -norm condition implies

| T, Ge) |I<| W, (o) | (11)
and

|17, o) lI<| W, () | (12)
where

T =

|:T wul }
™ T wu2 '
In our study, we tried two different types of control weighting

functions. The first type is composed of two first-order biproper
filters

s+w, /1, 0
Wi(s) = €5+w, (13)
0 s+ow,/l,
€,5+w,,

where €, €, are very small. The parameters /,, and [, represent
the maximum controller gains at frequencies below the cutoff
frequencies w_; and w,,. The second type of control weighting
function that we tried is constant:

o[k O
“Tlo Kk,

Here 1/k,; and 1/k,, represent the maximum controller
gains at all frequencies in closed loop. For both types of
weighting functions, we took k,;" =1, =02, k,"'=1,=05
and €; = €, = 0.0001.

The weighting function W ,(s) gives us more degrees of
freedom to constrain the control signals in order to satisfy
physical actuator saturation and bandwidth constraints. In our
case study, the filter cutoff frequencies were selected as @, = 12,
w, =13 rd/s. However, it finally proved preferable to use the
constant weighting matrix W, for our application, since it did
not increase the order of the generalized plant model P(s) by 2

(14)
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like W L(s) would, (hence the resulting H,, controller would
have a lower order). Moreover, the resulting closed-loop
transfer functions still satisfied inequalities (Equation 11 and
Equation 12) with W \(s). Figures 6 and 7 show the magnitude
of W, with both forms.

Iz, o)

—_— - — — —d

10° 10

Figure 6.
Constraint on elevator angle.

T, (jo)|

e —— — —

10*

Figure 7.
Constraint on horizontal canard angle.

H,, CONTROLLER

The GLA problem of Figure 3 can be recast into the standard
H, -optimal control problem (Doyle et al., 1988) of Figure 4.
The nominal generalized plant model

P(s) Py(s)
has a minimal state-space realization
x=A,x+B,w+Bpu
z=Cpx+ D, w+Dpu (16)

Y =Cpyx+ Dpyyw+ Dppyu
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which combines the aircraft model and realizations of the
weighting functions. The vector of exogenous signals is
w = [w," w,]” and the signals to be minimized are collected in
z=[yu'l".

As gusts act over a relatively short period of time, they can
be considered as signals with finite energy. Such signals can
have spectral contents similar to the PSD of stochastic Dryden
gust signals by using G,(s) as a filter. This remark provides
motivation for H,, GLA control design, as

min max
KeS welW

||Twzw||2 = min max ||TWZGwn||2 .

KeS

=min|7,.G, |, = minsup|7..(jw)G, (je)

where § is the set of all finite-dimensional, causal linear time-
invariant stabilizing controllers. Note that we chose to use the
performance weighting function W,(s) instead of G, (s) in our
design, but |¥,(jw)|>|G,(jw)| at all frequencies, which leads to
better performance.

The overall objective in this H,-optimal controller design was
to minimize ||7,, ||, over the set .S, in order to get || T, |oo < 1. This
would guarantee that the performance specification is satisfied
on the nominal model. Following Reference 4, an H, controller
K(s) of order 13 was designed using the Matlab u-Analysis and
Synthesis Toolbox (Balas et al., 1995) that achieved a norm of
IT,,llcc=0.68. Figure 5 shows that our H controller meets the
gust alleviation performance specification given above. We can
see that the maximum singular value of T,  is well below 10~
over 27[0.1,6] rd/s. ¢

The norms (maximum singular values) of the frequency
responses of T, , and 7, , shown in Figures 6 and 7 satisfy the
constraints of Equation 11 and Equation 12 for both control
weighting functions as mentioned above.

P - CONTROLLER

The H, controller design of the previous section provides
nominal performance. That is, performance is guaranteed only
if the model represents the aircraft’s dynamics perfectly, which
is clearly too optimistic. In this section, uncertainty in the
frequency responses of the actuators and sensors is taken into
account in the model and the controller design. Note that this
uncertainty may also include variations in the aerodynamics of
the control surfaces which may be caused by changes in altitude
and velocity of the aircraft. As shown in Figure 8, we include
two complex multiplicative uncertainty blocks in the model:
A, = diag{A,, Ap}, A, A, €C and A, €C. These
perturbations represent the uncertainty in the frequency
responses of the actuators and the sensor, respectively. We
chose the corresponding weighting functions to be:

0.75s +50
_ s +400 (18)
e 0 0.75s+22.5
s+400
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_0.155+30
"o 5 +1000

These weighting functions are selected such that the
magnitudes of their frequency responses represent the maximum
error (away from unity) in the actuators and sensor models at
each frequency. Typically, multiplicative perturbations are small
at low frequencies and rise toward or above one at high
frequencies. The weighting functions can be obtained by finding
an upper bound on several Bode plots of possible perturbations.
For example, suppose that an uncertain, parameterized model
G(p,s) of the sensor is available, where p is the vector of
parameters with known bounds. Then, one can fit a weighting
function W, ( jo) such that its magnitude is a tight upper
bound of all the plots of |G (p,, jw) —1| for i =1, ..., M, where p;
is a set of parameters within their bounds. The weighting
functions can also be obtained from experimental frequency-
response input-output data.

One must keep in mind that these weights represent the size
of the uncertainty and should thus be seen as hard constraints,
not design parameters. It is the performance weighting
functions that may be changed until a good robustness/
performance tradeoff is obtained in the design.

The block diagram of Figure 8 can be recast into the general
w-synthesis setup as given by Figure 9. Define the complex
structured uncertainty set

(19)

(= {A =blockdiag {A,,A,,, A}
3x3 (20)
(A, 0,8, €CHcC

ul?
and the augmented structured uncertainty set

I:={A, =blockdiag {A, A} AeQ, A €C™} cC ™6 (21)

where Ape C*° is a fictitious uncertainty linking the exogenous
inputs [wg w,]" to the output variables [z, z,]". This fictitious
perturbation is included to transform a robust performance
design problem into an equivalent robust stability problem,

A, (s)

P (s)

K (s)

Figure 9.

Standard setup for  design.

outputs of the structured uncertainty A, (s) € Ho, A(jw) € I' in
Figure 9 are, respectively, the vectors z, = [z37 z4 2) 2,"]'€R® and
w, = [ws" wy ng w, JeR’.

The structured singular value pu. of a complex matrix M € C*
is defined with respect to the structured uncertainty set I' as
follows:

wr (M) :=min{|A|: AL, det(/ -MA) =0} (22)
unless no such perturbation exists, in which case w, (M) =0.

A robust controller design based on . is less conservative
than a robust H,, design (not to be confused with our Hy
controller of the previous section which is optimal for the
nominal model, but was not designed to be robust to model
uncertainty). This is because the structured uncertainty A/ is
taken into account as a full block of uncertainty in a typical

which is easier to solve (Balas et al., 1995). The inputs and robust Heo design.
pe
* Z; e W, 24 Wy
—
m(s) Wu (s) Wncu —P AM Wncy Ay

1

r=0 —So_—t—» K(s)

o

—»0

G(s) T

Figure 8.

Setup for robust control design.
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A u-synthesis consists of finding the optimal controller that
minimizes the peak value of u [T, (jw)] over all frequencies.
That is,

min Sup MI‘ [Twz (j("))]

K()eS peR 23)

Compare this with the optimization problem for the Hy
controller design in Equation 17. The main benefit offered by
u-synthesis is robust performance. That is, according to the
Main Loop Theorem (Balas et al., 1995), if a controller
achieves

sup o (7, (jo)] <1,

then both stability and the performance specification ||7,, || < 1
hold for all A(s) € Hyo, ||All = 1, A(jw) € Q.

It is well known that no algorithm is yet available to compute
p (M) in the general case (including our case). Thus, the
optimization problem (Equation 23) cannot be solved directly.
However, the so-called D-K iteration algorithm (Balas et al.,
1995) has been proposed to minimize an upper bound for w,..
The D-K iteration is an attempt to solve

min ” DlT‘W_‘z_‘Dr—1 “m

KeS,Dy,D,

(24)

where the so-called left and right D-scales Dy(s), D(s) € He
are minimum-phase and have frequency responses of the form:

D,(jw)eD, = {diag{d,,d,,d;,1,}

R 25
dd,,deR } 23)

D,(jw)eD, = {diag{d,,d,,d,,I,}
:d.,d,,deR.}

(26)

This algorithm involves an iterative sequence of minimizations
over K(s) €S (holding the D-scales fixed) using the Hy
technique, then over the D-scales (holding K(s) fixed).

SIMULATION RESULTS

In this section, we use the Dryden model with parameters
o, =7 mls, L, = 580m to generate severe wind gusts for
simulation purposes. Figure 10 shows the gust vector used in
our simulations.

Figure 11 shows a magnitude plot of the frequency response
of the Dryden filter for simulation. We can see that the
performance specification enforced by the weighting function
should result in efficient GLA.

Time-domain simulations were conducted and results are
presented below. The results confirm that the H, controller can
dramatically reduce the effect of wind gusts on the vertical
acceleration of the aircraft for the nominal model comparing to
the results of different H, (LQG) controllers (Botez, Boustani
and Vayani, 1999), (Aouf, Boulet and Botez, 2000).

137

(mfs)

(m/s) o / o
2 g
£ 25
w 172
g g
£ =
20 0
8 8
8 3
£ 5 ]
2% 5 10 15 %70 5 10 15

time(s) time(s)
(m/s) 10
B Gust vector acting
% 5 on the aircraft *
g
c — —
20 o, =7m/s,L,=580m
3
)
S
£ 5
2% 5 10 15
time(s)
Figure 10.

Gust signals for simulation.
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Figure 11.

Dryden filter and performance weighting.

The goal of the simulation with the nominal model (without
uncertainties) is to show that our H, controller can deal with
strong turbulence without exciting the flexible modes or
generating large control angles that would saturate the control
surfaces. Figures 12 a and 12b show, respectively, the effect of
the gust w, = [w,1 wow ,3]7on the B-52 aircraft without using a
feedback controller, and with the H ,, regulator.

These plots show a dramatic improvement in flight comfort.
Figure 13 shows the control angles. Notice that the angle
swings of the elevator and the horizontal canard control
surfaces were reasonable. However, the rate of change of the
angles seems a bit fast. With known rate limits, one could
redesign the controller with lower cutoff frequencies in W' .

Figure 14 below shows the magnitudes of the weighting
functions
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(a) Open-loop response;
(b) Closed-loop response with H, control.
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(a) Elevator angle;
(b) Horizontal canard angle.
W (s) 0 (elevator) and around 8% of uncertainty for the second actuator
W, (s)= uncut\$ W (s) (horizontal canard). For the sensor, we assumed an uncertainty
e 0 W, .| " of 3.5% at low frequencies. These uncertainties grow with

in Equations 18 and 19. These weighting functions specify the
amount of uncertainty in the actuators and the sensor,
respectively. For the simulation, we arbitrarily specified nearly
20% of uncertainty at low frequencies for the first actuator
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frequency until they reach a constant level at high frequencies.

Our u controller obtained using a D-K iteration reached the
robust performance specified. Figure 15 shows the u-bounds
for the controller obtained in the second D-K iteration. The
maximum of the upper bound for u across frequencies is equal
t0 0.792, and therefore robust performance was achieved.
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Norm bounds for uncertainties.
0.8 v v v
0.7
2 o7
0.65
06 A A 4
10° 10° 10 10 10°
@ (rd/s)
Figure 15.
Upper and lower bounds on (- for the w design.

An H,, controller designed for the model with uncertainties
led to an maximum norm of the frequency response of the
closed-loop system equal to 15.35. This is too high and hence
unacceptable from a robust performance point of view. A
p-analysis was performed for the H,, controller and the results
are shown in Figure 16. It is seen that the maximum of u,.
obtained with the H, controller is equal to 3.1. This value being
much larger than one confirms the loss of robust performance.

This was expected because the H,, design is unable to take
into account the structure of the uncertainty as opposed to the
pu-design.

CONCLUSION

We presented a GLA H -optimal controller design for a B-52
aircraft model with flexible modes. The gust was generated
with a Dryden power spectral density model. This kind of
model lends itself well to frequency-domain performance
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Figure 16.

Upper and lower bounds on L. for the H, design.

specifications in the form of weighting functions. The H,
controller was shown to meet the desired performance
specification with reasonably small control surface deflection
angles. A p design was then developed for a perturbed model
including multiplicative uncertainties in the actuators and the
sensor. The w controller reached the robust performance level
specified. We also compared an H, controller design for this
uncertain model with the u design. We pointed out the loss of
robust performance of the H, design compared to the u design.
Future research will focus on the issues related to uncertain
modal parameters and different flight envelopes.
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