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Dynamics of large flexible space structures (LI'SS)
are characterized by their high order and their sig-
nificant number of closely-spaced, lightly-damped,
clustered low-frequency modes. Finite-element (FE)
models of LFSS are known to be accurate only for
the first few modes of the structure. Moreover, these
models do not provide the modal damping ratios.
Model identification of LFSS is often impractical be-
cause such structures are assembled in space. Thus
it would be desirable to have a design procedure that
would directly use an uncertain FE model to produce
a controller that could be implemented on real LFSS
with good confidence. lowever, most robust design
techniques (e.g. [1]) require accurate knowledge of the
damping ratios of the most significant modes to put
bounds on the uncertainty sets. Unfortunately, those
bounds are very sensitive to the amount of damp-
ing in the model. Overly large uncertainty subsets
of Ho are required to cover the lightly damped er-
ror dynamics of LFSS when additive or multiplica-
tive uncertainty models are used. This results in loss
of nominal performance to maintain robustness [4].
This note presents a simple description of uncertain-
ties in LFSS as stable perturbations in the factors of
a nominal left-coprime factorization (LCF) of LFSS
dynamics. This leads to a better, less conservative
description of the uncertainty set and hence improves
achievable closed-loop performance. Because of space
limitations, many details which can be found in the
full report [2] are omitted here.

1. An LCF of LFSS Dynamics

We start with LFSS dynamics in modal coordinates
including three rigid body modes to account for the
attitude (3 DOF) of the rigid part. Assume only dis-
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placements and rotations are measured. Then the
dynamic equations in modal coordinates can be writ-
ten as

1+ Dn+ An = Bju,
where y is the of measured outputs,
u 1s the vector of torque and force inputs,
D = diag{0,0,0,204wy,...,2(awn} and A =
diag{0,0,0,w?,...,w2}; ¢ is the nominal damping
ratio and w; is the nominal frequency of the 7** mode.
Taking the Laplace transform in (1) yields

9(s) = C1 [sI + sD + A]™! By a(s) (2)

The assumptions here are: (A1) No pole-zero cancel-
lation occurs when the product Cy [s2/+sD+A]™" By
is formed, (A2) The uncertainty in the output matrix
C1 can be lumped in with the input uncertainty. Let
the polynomial s* + as + b be Hurwitz with real ze-
ros. The stable, proper matrices M (s) := [s*]+sD+
A}/(s* +as+b) and N(s) := B, /(s> +as+b) form a
left-coprime factorization of the transfer matrix from
4 to 7. Note that scalings would be performed on the
factors to reduce conservativeness in an actual con-
troller design. The uncertainty modeling process pro-
posed here uses the a priori knowledge of the bounds
between which lie the values of {(;}1,, {wi}ley, of
each mode and the entries of B,. This information is
used to derive a bound on the norm of the coprime
factor perturbations at each frequency. The perturba-
tions AN, and AM,, of the coprime factors result-
ing solely from the perturbed real parameters are eas-
ily computed. Let A,, = [AN,, —AM,,]. Given
the above parametric uncertainty, a relatively tight
first-order weight r which covers |[A.,(jw)l| is de-
rived. Note that R = 1 and W = w;I in Figure
1.

y=Cin (1)

vector

2. A Robust H,, Design Example

Figure 1 shows the scaled closed-loop system with
all the weights for designing a K providing robust
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Figure 1: Generalized Plant with Scaled Perturbation
and Controller

stability and nominal performance. Suppose the re-
quirements for nominal performance are good track-
ing and good torque/force disturbance rejection at
low frequencies. These requirements can be trans-
lated into desired shapes for the norms of the sen-
sitivity matrices S, := r — e and S4 := d — y.
For example, ||, (ju)]| < [wr (jw)| and [|Sa(iw)|| <
[w]!(jw)|, Vw. The basic goal of the proposed Hoo

design is to achieve [[w — [ zl <lforA=0.
2 oo

The method described so far is illustrated by design-
ing a robust controller for a reduced model of the
Daisy experimental setup (3] using the M. design
method. The reduced 10**-order model is comprised
of two of Daisy’s flexible modes together with its three
rigid-body modes. The modal parameters are listed
in Table 1 with their uncertainties. It is assumed that
Daisy’s three torque wheels actuate the hub and that
two of Daisy’s jet thrusters actuate the flexible part of
the structure. There is up to 20% uncertainty in the
entries of the input matrix B;. Also, the three hub
Euler angles and two rib angles are measured. The

i | 1(x) 2(r) 3(r) 4(f) 5(f)
wi 0 37+£.03 | .37+.05 | .70%.10 | .70+ .05
Ci 0 114+.05 | .09+.05 § .024.01 | .044+.02

Table 1: Modal parameters of reduced model

generalized plant for the robust Mo design is built
according to Figure 1, and the weighting functions

are w1 = yroryaeTTeED T = %%‘5‘3@ (gisa
scalar). The controller obtained is of the 40'* order
and stable. The less-damped pair of complex closed-
loop poles has a damping ratio of 0.37. Robust stabil-
ity was achieved since |lw — z1|jcc = .92 and Figure
2 shows || S, (jw)|| and ||Sa(jw)|}- Closed-loop output
responses of the nominal system to hub torque step
disturbances (0, -5.4, 5.4 Nm steps around the x, y,

and z axes respectively) are plotted in Figure 3. The
maximum values of the simulated control torques and
forces are 6.8 Nm and 0.31 N respectively, below the
saturation limits. As can be seen, a good tradeoff be-
tween nominal performance and robust stability was
achieved despite significant modal parameter uncer-
tainties.
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Figure 2: Norms of Sg(jw) and S, (jw)
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Figure 3: Closed-loop responses to hub torque step dis-
turbances
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