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The model/data consistency problem for coprime fac-
torizations (CF) considered here is this: Given some
experimental frequency-response data obtained on a
system, show that these data are consistent with the
family of perturbed factor models. In other words,
does there exist a perturbation belonging to the un-
certainty set such that the input-output data can be
reproduced by the perturbed model? One motivation
for using a coprime factorization approach is that it
is well suited for modeling low-damped dynamics of
large flexible space structures {1]. The model/data
consistency problem boils down to the existence of
an interpolating function in RH (D) which evalu-
ates to a finite number of complex matrices of com-
patible dimensions at a finite number of points on the
unit circle. The main result is a theorem on bound-
ary interpolation in RH(D).. This necessary and
sufficient condition allows us to devise a simple test
consisting of computing minimum-norm solutions to
an underdetermined linear complex matrix equation
to check if the perturbed factorization is consistent
with the data. Left-coprime factorizations (LCF) are
studied, but the results also apply to right-coprime
factorizations (RCF). Due to space limitations many
details which can be found in the full report [2] were
left out.

Let G(s) be a real-rational transfer matrix and let
M(s) and N(s) be an LCF of G(s) in RHeo. Then
G(s) can be written as M (s)~'IN(s). The complex
argument s is dropped hereafter to ease the notation.
Let the perturbed plant model G, be expressed as a

perturbed left factorization with My, N, € RH

(1)

where M, = M + AM, N, = N + AN; AM,
AN € RMoo. Define the uncertainty matrix A :=
[AN. —AM]. This matrix is defined because the
result on robust stability of the system in Figure 1

Gy =A7I;11V,,,
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Figure 1: Feedback control of a perturbed LCF model

for a coprime factor plant description is expressed in
terms of a norm (maximum singular value) bound on
A(jw) [5), [6). Define the uncertainty set

D, :={A4 € RHw | |AGW)|| < |r(jw)], Yw € Rgz

and the family of plants

P:={G,| A€D}, (3)

where 7 is a scalar-valued function in R, assumed
small enough so that M, is nonsingular. For exam-
ple, we might require that (M (jw)) > |r(jw)] for
some w € R. The exact result due to Vidyasagar [6]
is

Theorem 1 The closed-loop system of Figure 1 with
controller K is internally stable for every G, € P iff
(a) K internally stabilizes G, and Yw € R,
~ -1
K(I+GK)'M .
(b)”[ (I+GEy M, ](Jw)

< =y -
(I+GK)"'M = PGl

In order to be able to use this result in the design of
a robust controller for a real plant, one has to con-
struct and modify the bound |r(jw)| until it makes
sense for the uncertainty in the physical system. The
consistency test proposed here is suitable for doing
that.

Suppose we are given a family of plants P. The ex-
act statement of the model/data consistency prob-



lem considered here is the following. Suppose that
a frequency-response experiment consisting of mea-
suring perfectly the frequency response G,(jw) of a
m-input, p-output system at w = wy,...,wy is per-
formed. Could the experimental frequency-response
data have been produced by at least one model in
P? Or, in other words, does there exist a fixed
A € D, such that the corresponding perturbed model
G, interpolates the complex matrices G, (jw;) at
W=Wy,. . ,wNT

Premultiplying (1) by M +AM and taking AM and
AN onto the left-hand side yields

AMG-AN =N - MG . (4)

Let U := N - MG, W := [:CI;] and s = jw.
Then (4) can be written as
A(ju)W (jw) = (%)

where W (jw) € Cm+P)x™ U(jw) € CP*™. Equa-
tion (5) is just an underdetermined system of linear
equations over the field C.

U(jw) ,

It is assumed that the measurements are perfect. Let
Gi = Gp{w;i) for i = 1,..., N, with similar defini-
tions for A;, W; and U;. We seek a test that would
show whether or not there exists a rational matrix
A that belongs to the uncertainty set D, and satis-
fies the interpolation constraints given by (5) at the
frequencies {w,...,wn}. This is done in two steps:
First, solve the matrix equation (5) with G = G; for
A;,i=1,...,N, such that A; has minimum norm.
Note that the matrix W; hqs full column rank, and
a minimum-norm solution A; to (5) is given by the
premultiplication of the left pseudoinverse of W; by
U,'.‘

Ai = U(Wr W)Wy (6)

If ||A,|| > |r(jw:)| for any i € {1,...,N}, then
the test fails: The family of coprime factorizations
cannot account for the frequency-response data. If
Al < fr(jwi)], Vi € {1,...,N}, then we must
show that there exists a matrix-valued function A €
RHo, taking on the complex matrix values {A;}N,
at the frequencies {w;}}; and such that ||A(jw)|| <
[r(jw)], Vw € R. This is the second step in the test.
Now the problem can be scaled as follows: Find a
matrix & € RHEX(M+P) interpolating the product
r~1(jw;)As at s = jw;, i = 1,..., N and such that
||®|lec < 1. The interpolation problem in RH of the
right half-plane is then transformed to an interpola-
tion problem in RM (D) by using the scalar bilinear
transformation s — z defined by z = (1 - s)/(1 +s)
which maps the closed right half-plane onto the closed
unit disk B. Thus the boundary interpolation prob-
lem can be stated as
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Problem 1 Given a set of distinct points {e/%}I_,
on the unit circle OD and a sel {®:};_, in Cmxn sat—
isfying ||®; {|_< 1, does there exist a function ® c
R’HOO(D) 1®]lc < 1 such that B(ei®') = &;, i =
1,...,7 %

The main result on boundary interpolation for non-
square matrices proved in [2] gives an answer to Prob-
lem 1:

Theorem 2 Given a set of distinct points {e/%}7_;
on 3D and a set {®: }r=i tn C™*® there exists afunc-
tion Q € RH oo (D)m*n satzsfymg B(ei% ) =®;,i=
Lot 8lle <1iff 18l <1, Vie{1,...,7}.

The proof uses the results in {4] and [3] on the matrix
Nevanlinna-Pick problem.

With Theorem 2 in hand, checking consistency of
the perturbed CF model with the experimental
frequency-response data becomes a simple matter.
It suffices to compute the complex matrices A; for
i=1,...,N and to check that ||A]| < |r(jw;)|, Vi =

., N. If this inequality does not hold for some
j €{1,...,N}, then no perturbation of the coprime
factors in D, could have produced the data. However,
the bound |r(jw)| can be modified such that the in-
equality above is satisfied for all . One can now see
how r can be constructed and improved as new ex-
perimental data become available. If it is suspected
that the frequency-response data are noisy, a more
conservative » may be chosen.
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