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Abstract 
This paper presents a linear matrix inequalities (LMI) 
approach to robust tunable control.  This controller design 
technique provides a new on-line tuning strategy for 
industrial process control systems. The tuning strategy is 
based on the performance robustness bounds of the system 
and knowledge of the plant uncertainty’s weighting 
function, which may change with time. The internal model 
control structure of the controller is adopted together with 
additive plant uncertainty. The design and tuning of the 
robust tunable controller for an SISO system relies on an 
approximate solution to the two-disc optimization problem, 
that is solved over the class of discrete-time finite impulse 
response filters via the solution of an LMI problem. A 
numerical example is given to illustrate the technique. 
 
1.  Introduction 

For linear time-invariant plants, model uncertainty can 
often be characterized as unknown stable perturbations, 
bounded by the magnitudes of given weighting functions in 
the frequency domain. The following controller design 
question arises from robustness considerations: Given a 
model with uncertainties, what is the best possible 
controller design that will optimize some performance 
criterion for the worst-case model in the set? Typically, a 
robust ∞H  or µ  controller design is based on a set of 
weighting functions representing performance 
specifications and uncertainty sets with the goal of 
achieving the best robustness/performance tradeoff. Once 
the robust controller is implemented, its parameters are 
fixed and no tuning is possible. This may result in 
performance degradation or even instability as the plant 
dynamics change over time, e.g., from system component 
wear, or from changes in the raw material properties of 
industrial processes. Thus, the capability of tuning the 
controller is often required in order to trade-off 
performance and robustness on-line since an initial ∞H  or 
µ  controller design rarely has the best possible weighting 
functions for the plant [3].  
 
Thus, as mentioned in [10], an important new challenge for 
control research is to provide industry with a set of design 
techniques and implementation tools for robust, on-line 
tunable controllers. It can be argued that one of the reasons 
why decentralized single-input single-output PID control is 
still widely used in the process industry (despite potentially 
severe performance limitations), is that PID controllers can 
be tuned on-line by operators or plant engineers to maintain 
process performance after a change in dynamics.  

Internal model control (IMC) [2] is an attractive approach 
in that it allows some tuning of the IMC filter Q  while 
keeping the nominal closed loop stable. IMC is based on 
the parameterization of all stabilizing controllers for stable 
plants: 1( )K I QP Q−= − , where Q ∞∈ RH , and where P  
is the nominal plant model.  
 
Following our preliminary results on robust tunable control 
for SISO systems in [10], this paper presents a linear matrix 
inequality (LMI) strategy to design and tune a robust 
tunable controller. As shown in [10], IMC-based robust 
tunable control hinges on the ‘two-disc’ optimization 
problem. For stable SISO systems, the solution to the two-
disc problem was given in terms of the optimal frequency 
response of the IMC filter. When the size of the uncertainty 
changes, the IMC filter should be retuned according to the 
new weighting function to achieve the best robust 
performance tradeoff. An approach to retuning an FIR IMC 
filter on-line via an LMI optimization is given. 
 
One of the main goals of feedback control is to maintain 
system performance despite the presence of possibly time-
varying plant uncertainty. Using mu-synthesis via a D-K 
iteration is a systematic and often successful approach for 
achieving this objective. But there are known problems 
with the D-K iteration procedure. The most pronounced 
problem is that it does not always converge to a global 
minimum. Even if both the K-step and D-step are convex 
they are not jointly convex. In principle, the scaled ∞H  
norm should decrease at each step with reasonable 
computational complexity, but in practice the effectiveness 
of D-K iteration depends on the quality of fit of the D-
scales. There is a tradeoff between fitting quality and order 
of the D-scales. With a poor fit, the scaled ∞H  norm can 
even increase in subsequent iterations. So, for an on-line 
controller redesign scheme, the computational cost of D-K 
iteration may be too high. Furthermore, the execution of the 
algorithm often needs to be overseen by an engineer to steer 
it out of numerical pitfalls.  
 
On the other hand, the strategy that we introduce here gives 
the designer another way to approach the on-line tuning of 
the controller. It uses an LMI approach to get an FIR IMC 
filter which approximately matches the optimal frequency 
response. As the numerical example shows, the results have 
a reasonable computational cost and good convergence. 
This technique could support automatic or operator-initiated 
on-line controller tuning according to uncertainty changes 
or new performance requirements for the plant.  
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2. Theory of IMC Based Robust Tunable Control 
2.1. Background 
The concept of Robust Tunable Control was introduced in 
[10] through the construction of an equivalent IMC block 
diagram to the general unity-feedback control system [2]. 
Consider the IMC structure in Figure 1.  It is well known 
that for a stable plant, nominal closed-loop stability is 
guaranteed iff the IMC filter Q  is stable. Here, we consider 

a nominal plant P  with uncertainty a∆  whose size is 

specified by the scalar weighting function aW . For robust 

performance, there is a performance weight pW  on the 

error signal (for sensitivity minimization) and a weight uW  
is placed on the control signal to satisfy actuator constraints 
(see Figure 1.) We pull out the normalized additive 
perturbations and rearrange the system into a aG − ∆  
linear fractional transformation (LFT) form, as shown in 
Figure 2(a). 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 1: IMC block diagram with weighting functions 
 
 
  
 
 
 
 
 
 
 
Figure 2: (a) LFT form of system; (b) Setup for µ-analysis 
 
Robust performance of the system requires that the upper 
linear fractional transformation { },U aG ∆F  satisfy 

{ }, 1, 1U a aG
∞∞

∆ ≤ ∀ ∆ <F . This can be tested by 

computing the structured singular value [ ]( )G jµ ωΓ  at all 

frequencies, where { }{ }: diag , : ,a p a pΓ = ∆ ∆ ∆ ∈ ∆ ∈ ^C  is 

the uncertainty structure. The transfer matrix G  is given 
by: 
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 The "two-block µ" has the following upper bound:  

[ ] 2 2 2

11 22 12 212

( )a p

G G G G G

W Q W I QP

µΓ ≤ + +

+ −=
  (3) 

Thus, a sufficient condition for robust performance is 
provided by the following upper bound:  

[ ] ( ) 1,a pG W Q W I QPµ ωΓ + −≤ ≤ ∀ . (4) 
This sufficient condition is actually also necessary for an 
SISO plant, i.e., the upper bound on [ ]( )G jµ ωΓ  is tight 
[1].  
 
Since we want to keep the stable IMC filter Q  tunable, 
there are two questions that arise: Given the weighting 
functions, what is the optimal Q  that would minimize the 
upper bound on [ ]GµΓ ? And, what is the range and best 

"direction" of tuning for Q so that the upper bound remains 
less than one? Suppose the plant is square, n n× . To 
answer the first question, a minimization problem is set up 
frequency by frequency:  

1
,

( )min
n n

a

a p
Q W Q

W Q W I QP
− ×< ∈

+ −
C

.  (5) 

where all transfer functions are evaluated at s jω=  and 

the constraint 1
aQ W −<  enforces robust stability. This is 

the so-called two-disc optimization problem in ∞H  control 
theory. 
 
2.2. Two-disc Problem  
A theory for the two-disc problem has been developed in 
[5],[6] by expressing the problem as a distance 
minimization in a certain Banach space, and then applying 
Banach space duality methods to characterize the solution. 
The theory in [5],[6] leads to a precise characterization of 
the solutions as well as a numerical approximation. It is 
proved that: 
1- An optimal Q  which minimizes (7) does exist under the 
following assumptions : a) Plant P  is strictly proper; b) 

,a pW W  are continuous. The result of the minimization is a 
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function of the weighting matrices and is restricted to a 
certain range. 
2- The optimal Q  can be approximated by a finite convex 
optimization in the following manner: Restrict Q  to lie in 

the space mP  consisting of degree m  analytic polynomials 

of the form 0 1
m

ma a z a z+ + +…  with real coefficients, 
and then discretize the unit circle sufficiently finely with 
respect to m . This yields a convex problem in the variables 

0 1, , , ma a a… . For any fixed m , these convex problems 
generate upper bounds for µ and suboptimal control laws, 
since Q  is restricted to a proper subspace of ∞H . Such 
problems are then amenable to standard applications of 
convex programming techniques. Such a technique is the 
ellipsoid algorithm of Shor, Yudin and Nemirovski, which 
can solve the problem approximately in the framework of a 
Linear Matrix Inequality Problem [9]. We use a similar 
approach of an LMI formulation of the robust performance 
problem in the numerical example. 
 
2.3. Tuning for SISO plants 
For SISO plants, the sufficient condition for robust 
performance in (4) is also necessary as the bound is tight:  

[ ] (1 ) 1,a pg w q w qpµ ωΓ += − ≤ ∀   (6) 

In this section, we provide answers to the two questions 
posed above for minimum-phase SISO plants. The above 
minimization problem can be reformulated as follows: 

{ }1
1 1

1
1 1,

min 1
q q

F q q
γ

γ βγ
−

−

∈ ≤
= + −

C
,  (7) 

where 1 :q qp= ∈ C , 1: aw pγ −=  is the relative size of 

the uncertainty, and pwβ = . The quantity 
1

1 11q qβγ −+ −  is best viewed as the sum of lengths of 

vectors 1q  and ( )1
11 qβγ− −  in the complex plane. The 

vector ( )1
11 qβγ− −  starts from the tip of vector 1q  and 

passes through the point 1, as shown in Figure 3. It is clear 
that the minimum sum of vector lengths is obtained when 
the two vectors are aligned on the positive real axis. This 
means that the best direction for tuning the IMC filter q  is 
along the inverse of the nominal plant.  

 
Figure 3: Minimization of the sum of two vector lengths 
 

From Figure 3, we have the following cases leading to 
different solutions to (7), all based on the required 
alignment property of vectors 1q  and ( )1

11 qβγ− −  on the 
real line to minimize their sum of lengths: 
 
Case γ β= : the relative uncertainty is equal to the 
performance spec. Then, optimal 

1
1 [0, min{1, }]optq γ −∈ ⊂ R ,  and F γ= .  

 
Case β γ> : the performance spec is greater than the 
relative uncertainty. Then, 1

1 min{1, }optq γ −= , 

1
1 1

1

, 1
1 (1 ),

opt

opt

q
F

q
γ

β γ γ− −

=
=  + − =

.  

 
Case β γ< : the performance spec is less than the relative 
uncertainty. Then, 1 0optq = , for which F β= . 

Note that the optimal 1optq  is real in each case. These 
results stated in terms of the nominal plant model and the 
weighting functions are summarized in Theorem 1 below. 
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∈


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




       

    


Where optq  is the optimal frequency response of the IMC 

filter that minimizes [ ]gµΓ . 
Remarks: 
1- The real number 1optq  can be seen as a gain on optq . The 
most favorable direction of the IMC filter q  for improving 
robust performance is along the inverse of the plant. That is, 
the phase of ( )q jω  should be set equal to the phase of 

1 ( )p jω− . 
 
2- When the performance weight exceeds the relative 
uncertainty, the robust performance index  [ ]gµΓ  cannot 
go below the latter. This is a typical situation in the 
passband of the control system. In this case, the optimal 

1q 1(1 )qβ
γ

−

1 Re

Im
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IMC filter is the plant inverse, which is of course 
impractical as it leads to a controller with infinite gain at 
frequency ω . 
 
3- When the performance weight is smaller than the relative 
uncertainty, the robust performance index [ ]gµΓ  is 
limited by the former. This is a situation where the 
uncertainty dominates the tradeoff, e.g., at high frequencies. 
It turns out that the optimal robust performance level 

[ ] pg wµΓ =  is obtained by "turning off" the controller at 
frequency ω , which of course leads to a direct open-loop 
path from the reference through the weighting function 

pw . 
 
4- Finally, when the relative uncertainty is equal to the 
performance weight in magnitude, all IMC filters on a 
straight line between 0 and the plant inverse are optimal.  
 
5- A necessary condition for robust performance is: 

min , 1,a
p

w
w

p
ω

 
≤ ∀ 

 
. 

 
This analysis provides insight into the performance vs 
robustness tradeoff, but it is clear that we need to include a 
weighting function on the control signals to avoid the 
singularity of infinite-gain control. Referring back to Figure 
2, the perturbed closed-loop transfer function from the 
reference to the control signal (SISO case) is given by: 

1: (1 )ru u a aT r u w q qw −= = + ∆6 .   (8) 
 
The actuator constraint 1ruT ≤  can be expressed as: 

1(1 ) , 1u a a aqw qw −≤ + ∆ ∀ ∆ < . Note that normally 

the relative uncertainty is below 100%, i.e., 1aw
p

< , and 

from the above robust stability constraint 1
a

pq
w

< , we 

obtain 
1 1a

a
w

qw q
p

= < . Thus, the tightest constraint is: 

1u aqw qw≤ − . Therefore, the resulting constraint on the 
IMC filter is given by: 

  1

u a

q
w w

≤
+

.  (9) 

Including this constraint in Theorem 1, we get the main 
result providing a frequency response characterization of an 
optimal IMC filter in Theorem 2 (also found in [10].) 
 
 

Theorem 2: 

[ ]
N N

1 1

1 1
,

min 1
u a

a
pp

q q
w w

w
g q w q

p
β

γ

µΓ
∈ ≤

+

= + − =
^

 

 
Where optq  is the optimal IMC filter that minimizes 

[ ]gµΓ  while satisfying the actuator constraint.  Theorem 2 
allows us to draw some additional interesting conclusions 
as guidelines for controller design and on-line tuning: 
• If the additive uncertainty level aw  and/or the control 

weight uw  is increased, 1q  has to decrease for the 
best tradeoff. 

• The robust performance level degrades linearly, i.e., 
[ ]gµΓ

 increases, with an increase in pw . 

Also note that all remarks pertaining to Theorem 1 still hold 
true here. 
 
3. An LMI Approach to Designing Robust Tunable 
Controllers 
Linear Matrix Inequalities and associated LMI techniques 
have emerged as powerful design tools in areas ranging 
from control engineering to system identification and 
structural design [9]. Three factors make LMI techniques 
appealing: 
• a variety of design specifications and constraints can be 

expressed as LMIs, 
• once formulated in terms of LMIs, a problem can be 

solved exactly by efficient convex optimization 
algorithms (the ‘LMI solvers’), 

• while most problems with multiple constraints or 
objectives lack analytical solutions in terms of matrix 
equations, they often remain tractable in the LMI 
framework. This makes LMI-based design a valuable 
alternative to classical ‘analytical’ methods. 

 
Theorem 2 provides a characterization of the frequency 
response of an optimal IMC filter optq . The 
implementation procedure is to find a stable transfer 
function ( )dsnq s  that fits the optimal frequency response. 
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A frequency-by-frequency optimization problem can thus 
be set up as follows:    

min ( ) ( )
dsn

dsn optq H
q j qω ω

∞∈
−   (10) 

Since we have the magnitude and phase of optq  at each 
frequency point, we can treat this optimal magnitude and 
phase pair as frequency-response data points. Thus, along 
the frequency grid, the optimization problem (10) can be 
solved as a matrix norm inequality problem. Next, we set 
up an equivalent LMI problem to get the desired filter. 
 
3.1. Setup of the LMI problem 
Given the nominal plant model and the three weighting 
functions, ( )optq ω  is first computed using Theorem 2 over 
a chosen frequency grid. For each frequency 

, 1, ,k k Nω = … , the optimization problem (10) becomes: 

2 *

min , such that 

[ ( ) ( )]
0

[ ( ) ( )] 1

dsnq H

dsn k opt k

dsn k opt k

q j q
q j q

ρ

ρ ω ω
ω ω

∞∈

 −
> −  

 (11) 

 
Following [4], we restrict dsnq  to the space S  of thL -
order discrete-time, real finite impulse response filters. In 
order to do this, we use a sampling period sT  to map the 
continuous frequency points to discrete points over the 
range [0, ]i πΩ ∈  using the bilinear transformation. We 
have: 

0

( ) , 1, ,k

L
j n

dsn k i
i

q j q e k N− Ω

=

Ω = =∑ … . (12) 

Note that one could use an FIR filter length of 2N  and 
directly get its coefficients from the set of 2N  real linear 
equations obtained by evaluating polynomial 1( )dsnq z−  at 
the N  frequencies. However, although this technique 
provides perfect interpolation, and notwithstanding the 
increased filter order, it has the tendency of introducing 
significant oscillations in the frequency response of the 
filter. Thus a lower order filter is desirable. Then, the 
optimization problem (11) is transformed into the following 
convex LMI problem with complex matrices: 

2

2 *

such thatmin , 

[ ( ) ( )]
 0,

[ ( ) ( )] 1

1, ,

dsnq

dsn k opt k

dsn k opt k

q j q
q j q

k N

ρ

ρ
∈

 Ω − Ω
> Ω − Ω  

=

S

…
       (13) 

where 
0

( ) , 1, ,k

L
j n

dsn k i
i

q j q e k N− Ω

=

Ω = =∑ …  

Recall that the inverse DFT yields a periodic filter [ ]dsnq n , 
so we have to add this constraint to the LMI problem. 
Suppose [ ]dsnq n  is periodic, its DFT ( )dsn kq jΩ  is a 
complex sequence: 

( ) ( ) ( )dsn k re k im kq j q j jq jΩ = Ω + Ω . By the Hilbert 
transform relationship between the real part and imaginary 
part of ( )dsn kq jΩ   [7], we have for 1, ,k N= … : 

1

0

1( ) ( ) ( ),
N

im k re m
m

jq j V k m q j
N

−

=

Ω = − Ω∑   (14) 

where 
2cot( / ), odd

( ) : , 0 1
0, even

j k N k
V k k N

k
π−

= ≤ ≤ −


      (15) 
We add this equality constraint to the LMIP. Then the 
optimization problem becomes:     

2

2 *

such thatmin ,  

[ ( ) ( )]
0,

[ ( ) ( )] 1

1, ,

dsnq

dsn k opt k

dsn k opt k

q j q
q j q

k N

ρ

ρ
∈

 Ω − Ω
> Ω − Ω  

=

S

…
      (16)

/ 2

0

1

/ 2 1

1( ) ( ) ( )

( ) ( ) , 0, , / 2

N

im k re m
m

N

re N m
m N

jq j V k m q j
N

V k m q j k N

=

−

−
= +

Ω = − Ω


+ − Ω =


∑

∑ …

      (17) 
 
3.2. Numerical example 
YALMIP [11] is an interface to a number of semi-definite 
solvers, and allows the user to define standard problems 
(LP,SOCP,SDP) in an intuitive way. Its most important 
features are: (i) Most linear Matlab™ operators can be 
applied to matrix variables in order to define objective 
functions and constraints (LMIs, second order cone 
constraints and linear constraints), (ii) It supports most of 
the available public domain semi-definite solvers [8]. The 
computing environment used was a dual-CPU Pentium III 
PC with 256MB RAM, Windows 2000™ and Matlab™ 
6.2.  
 
Consider a second-order nominal plant model with 
undamped natural frequency nω  rad/s and damping ratio 
ζ  with additive uncertainty: 

  
2

0
2 22

n

n n

k
p

s s
ω

ζω ω
=

+ +
. 

Let us pick 0.5ζ = , 100 rd/snω = , 0 3k = . The 

sampling period is set to 0.005sT s= . Numerically, 
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4

2 4

3 10
100 10

p
s s

×=
+ +

, and the  weighting functions are 

15
110aw

s
=

+
, 0.5( 1)

0.01 1u
sw
s
+=
+

, 0.5
0.01 1pw

s
=

+
. 

 
Figure 4 shows the fit of the designed 25th-order FIR IMC 
filter to the optimal frequency response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Numerical result of the designed IMC filter using 
LMI approach. Number of frequency points:25, solver time: 
20s 
 
Figure 5 shows a plot of the structured singular value 
computed using Theorem 2 with the 25th-order IMC filter. 
Clearly this design meets the performance robustness 
specification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Plot of [ ]gµΓ  vs frequency point index 
computed using Theorem 2 with the designed IMC filter. 
Number of frequency points:25 
 
4. Conclusion 
The numerical results shows that an FIR IMC filter dsnq  
with a reasonable fit on the optimal frequency response 

( )optq ω  can be obtained in less than a minute using an 
LMI solver on a PC.  
 
 
Furthermore, Theorem 2 provides a very quick and simple 
way to compute [ ]gµΓ

. Our proposed approach to robust 
tunable control for SISO plants with additive uncertainty 
leads to the possibility for the plant engineer to tune the 
controller on-line by directly changing either the 
uncertainty, the performance, or the actuator weighting 
functions, as the need arises. Future research will address 
the robust tunable control problem for unstable and 
multivariable plants with LFT uncertainty models. 
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