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1 Introduction

Daisy is an experimental testbed facility at the University of Toronto’s Institute
for Aerospace Studies (UTIAS) whose dynamics are meant to emulate those of
a real large flexible space structure (LFSS); see Figure 1 [8]. The purpose of the
facility is to test advanced identification and multivariable control design meth-
ods. Modeled roughly to resemble the flower of the same name, Daisy consists
of a rigid hub (the “stem”) mounted on a spherical joint and on top of which
are ten ribs (the “petals”) attached through passive two-degree-of-freedom ro-
tary joints and low-stiffness springs. Each rib is coupled to its two neighbors via
low-stiffness springs. The hub would represent the rigid part of a LFSS, while
the ribs would model its flexibilities.

Concerning Daisy’s actuators, each rib is equipped with four unidirectional
air jet thrusters that are essentially on-off devices, each capable of delivering a
torque of 0.8 Nm at the rib joint. Pulse-width modulation (PWM) of the thrust
is used to apply desired torques on the ribs. The four thrusters are aligned by
pairs to implement two orthogonal bidirectional actuators. The hub actuators
consist of three torque wheels driven by DC motors whose axes are orthogonal.
Each can deliver up to 38.8 Nm.

Concerning the sensors, mounted at the tip of each rib is an infra-red emit-
ting diode. Two hub-mounted infra-red CCD cameras measure the positions of
these diodes via ten lenses. The cameras are linked to a computer that from the
kinematics of Daisy computes the 20 rib angles relative to the hub in real-time
(at a 30 Hz sampling rate) from the sampled infra-red video frames. This vision
system, called DEOPS (Digital Electro-Optic Position Sensor), was developed
at UTIAS [17]. Its resolution is approximately 0.1% of the cameras’ field of view,
which roughly translates to an angle measurement accuracy of 3.5 x 10~4 radians
(0.02 degrees) in the ideal case. The hub orientation and angular velocity can be
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measured with position and velocity encoders. There are also accelerometers on

the ribs, but for this research only DEOPS and the hub position encoders were
used as sensors.
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Fig. 1. Daisy LFSS experimental testbed.

In general, the dynamics of LFSSs are characterized by their high order
and their significant number of closely-spaced, lightly-damped, clustered low-
frequency modes. They pose a challenging problem to the control system de-
signer, who must deal with those characteristics while ensuring a certain level
of robustness in the face of significant model uncertainty. Mathematical linear
dynamic models of LFSSs are usually obtained using finite-element (FE) meth-
ods, but these models are known to be accurate only for the first few modes of
the structure. Moreover, these models do not provide the modal damping ratios,
hence they are originally undamped. Model identification of LFSSs is often im-
practical because such structures are assembled in space and cannot be easily
tested on earth due to problems caused by the gravity field and the atmosphere.
Thus it would be desirable to have a design procedure that would directly use an
FE model and a natural description of the uncertainty to produce a controller
that could be implemented on real LFSSs with good confidence.




2 Modeling LFSSs ' 117

Daisy is a challenging testbed for the following reasons:

~The dynamic model available for Daisy is linear, of order 46, including 20
flexible modes and three rigid-body modes. The natural frequencies of the
flexible modes are clustered around 0.6 rad/s, and model reduction is not
possible, at least by conventional methods. An order of 46 presents a chal-
lenge, both for controller design and for subsequent digital implementation.
—There is significant uncertainty in modal parameters, for example, up to
50% uncertainty in damping constants.

—Daisy has some pronounced nonlinear characteristics, the most prominent

being the PWM mode of the air-jet thrusters, together with their reaction
delay.

Our program of research on Daisy includes the following issues:

—Getting a non-conservative linear uncertainty model.

—Testing the applicability of H,, optimization to control design for Daisy,
and LFSSs in general.

—Developing a method for model validation.
—Testing the applicability of y optimization.
—Testing the applicability of recent optimal sampled-data methods.

—Studying the control of Daisy with non-colocation, that is, without a full
complement of actuators and sensors.

—Developing an effective tool for PWM control in the H-inf framework.

This paper summarises our results on the first two items. For a more complete
report, the reader is referred to [4].

Notation

The norm of a complex matrix is taken to be its maximum singular value: |H|| =
o(H). The co-norm of z in R™ is ||z|oe = maX;=1,..,n |*s|. We denote the open
and closed right-half complex planes by C, and C; respectively. The extension

of C; to infinity is written as C4 U{o0}. For a normed space X, BX denotes its
open unit ball. ’

2 Modeling LFSSs

- Uncertainty modeling in LFSSs is critical if one is to achieve an acceptable level
- of robustness with a practical controller. Some works (19], [1], [25] use norm-
bounded additive or multiplicative perturbations of a nominal model in the
frequency domain to account for uncertainty in the modal frequencies, damping
atios, and mode shape matrix of the model. Unmodeled modes of the structure
#nd uncertain actuator dynamics can also be represented in this way [20]. Such
pproaches to uncertainty modeling in LFSSs do not handle modal parameter
incertainty very well: Slight variations in either the mode frequencies or damping
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ratios usually cause the associated dynamic perturbations to be large in the oo-
norm sense. Indeed, additive or multiplicative perturbations may contain large
peaks in their frequency responses because of the inherently low damping ratios
in LFSS dynamics. At the limit, undarsne;y/mes cannot have a representation
as norm-bounded perturbations of these types. Covering unmodeled modes with
such perturbations suffers from the same problem. As a result, one has to choose
large weighting functions to bound perturbations that arise from small variations
in the modal parameters. In an actual Ho, controller design, this may lead
to difficulties in making the closed-loop system robustly stable to all weighted
perturbations of admissible co-norm while achieving some desired performance
objective. Thus, in this case, the basic tradeoff between robust stability and
nominal performance may be detrimental to the achievable performance level.

In this paper, it is suggested to transform real parameter uncertainty in the
modes into unstructured uncertainty without getting too conservative in the
sense that the uncertainty set in H, has to be kept relatively small. This is mo-
tivated by the fact that many results and practical controller design techniques
are available for this kind of uncertainty, whereas a useful frequency-based design
method dealing explicitly with a large number of scalar real structured perturba-
tions in a high-order dynamic model has yet to be developed. So far, u-synthesis
has proven to be one of the most effective ways to deal with complex structured
uncertainty, and some authors (e.g. [19]) have used it to model real parametric
uncertainty. Recently the mixed real/complex p problem has been studied [11]
and design methods based on minimizing an upper bound on the mixed x func-
tion, such as the so-called Popov controller synthesis [14], have been developed.
Application to a flexible structure has been reported in {15]. These methods
are attractive but they quickly become numerically difficult (actually, they are
NP-hard [5]) as the plant’s order and the number of independent perturbations
increase. Some of them also suffer from controller inflation. Hence they are of
limited use for high-order LFSS models when many real scalar perturbations
are modeled as individual scalar blocks. Furthermore, an unstructured complex
uncertainty block must still be added to account for unmodeled dynamics, and
this block usually represents additive or multiplicative uncertainty. This means
that the attainable performance may be severely limited as previously discussed.

Yet another approach to the robust control of LFSSs is the passivity ap-
proach [16]. It is well known that an LFSS with colocated rate sensors and
force/torque actuators and with the same number of inputs and outputs has
a positive-real transfer matrix model. Then if a strictly positive real controller
is designed, it follows-that the closed-loop will be stable for all modal pertur-
bations, regardless of the number of unmodeled modes. Although this result is
of great importance, it only applies to structures of rather restricted configura-
tions. Moreover, one cannot use this result for controller design achieving robust
performance. Recently, dynamic embeddings have been proposed to turn a non-
square/noncolocated LFSS model into a positive real system (18]. Even though
this approach seems promising, it is not yet clearly known how robust the em-
bedding technique is, i.e., small perturbations in the original plant may destroy
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the positive realness property of the embedded plant.

It appears that a different description of the uncertainty is needed. Some
authors have argued (e.g. [26]) that coprime factor descriptions in H, of nearly
unstable plants, such as LFSSs, is a sound way to model these systems. This
is the approach taken here, as introduced in [3]. The loopshaping technique of
McFarlane and Glover [21] involves'modeling the plant as a normalized coprime
factorization and it has betin/s.wéissfully applied to design controllers for LF-
SSs [21]. Similar to the loopshaping method is the weighted-gap optimization
technique that was tested on LFSS experimental facilities by Buddie et al. [6].
These techniques show the potential of modeling LFSS dynamics using coprime
factorizations, but they don’t address the problem of converting known bounds
on perturbations of the modal parameters into norm bounds on factor perturba-
tions. The difficulty comes from the fact that these methods rely on normalized
coprime factorizations, which destroy the decoupled structure of the nominal
modal state-space models.

Section 3 presents a very simple method to obtain a left coprime factoriza-
tion (LCF) of LFSS dynamics in modal coordinates that preserves the decoupled
structure. The plant uncertainty is described as stable perturbations of the co-
prime factors. The structure of the LCF allows one to go easily from modal
parameter uncertainty to an unstructured description of the uncertainty as sta-
ble norm-bounded perturbations in the factors, as discussed in Section 4. This
allows a better, less conservative description of the uncertainty set and hence
should lead to better closed-loop performance and guaranteed robustness.

3 A Left Coprime Factorization of LFSS Dynamics

An FE method gives a high-order model of the flexible part of the structure
consisting of perhaps thousands of ordinary differential equations. Rigid-body
modes may be included to account for the attitude and position of rigid parts of
the structure. In order to have a fixed model for our discussion, we consider three
rigid-body modes accounting for the attitude of the main rigid part. (Daisy has
these dynamics, although two of the rigid-body modes are pendulous, so they can
be viewed as flexible modes.) The model is undamped, and it consists essentially
of a positive definite mass matrix M and a positive semidefinite stiffness matrix
K; the equations are

M§+ Kq= Byu (1)
Y= COQa (2)

where ¢(t) € R™"Z is a vector of attitude coordinates for the rigid part and
physical coordinates (displacements and rotations) of the flexible parts of the
LFSS, the input u(t) € R™ is a vector of actuator forces and torques applied to
the structure, and y(t) € R? is the vector of measured outputs.

A real matrix E whose columns are eigenvectors of the matrix M~1K and
such that it diagonalizes both M and K, i.e., ETME = I and ETKE — A,
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where A is diagonal with the squared mode frequencies on its main diagonal,
always exists ([13], Theorem 4.5.15). It defines a coordinate transformation from
the modal coordinate vector 7 to the physical coordinate vector g, i.e., ¢ = En.
Such a matrix is called a mode shape matriz of the system and its columns are
the mode shapes of the structure. Thus the mode shapes and mode frequencies
are the eigenvectors and eigenvalues of M~1K.

We start with LF'SS dynamics in modal coordinates, reduced to a reasonable
order by discarding the less significant flexible modes according to some measure
of their input-output influence [24], [12]. The first three are the rigid-body modes.
The modal frequencies of the n — 3 remaining retained flexible modes, {w;}%,,
are given by the FE model; uncertainties will be introduced later. Damping
is added to the nominal model, as it is known that damping ratios of flexible
modes are nonzero, since flexibilities in any LFSS are dissipative in nature. So if
{¢:}r4 are positive upper bounds and {¢ ;}i=4 nonnegative lower bounds on the
otherwise unknown damping ratios, we may take {¢; := ({, + ¢,)/2}2 4 as the
nominal ones. Transforming (1) using the mode shape matrix E, truncating, and
adding a diagonal damping matrix D, we get the nominal dynamic equations in
modal coordinates:

i+ Di + An = Bu (3)
y=C, (4)

where

D = diag{0,0,0,2{sws, . . ., 2¢wn }
A = diag{0,0,0,u3,...,w?}

B, =ETB,

Cl = C()E,-

and E. is composed of the columns of E corresponding to the modes kept in the
model. Thus

ii(s) = [T+ sD + A" By i(s) 5)

§(s) = C1 [$*I + sD + A7} By ii(s). (6)

The assumptions here are as follows:
(A1) The sensors have no dynamics.
(A2) No pole-zero cancellation at s = 0 occurs when the product C, [s2] +sD +
A7 By is formed.
(A3) The uncertainty in the output matrix C; can be lumped in with the input
uncertainty.

The motivation behind assumptions (A1) and (A3) is that space sensors are
usually accurate and fast while space actuators, which include torque wheels
and gas jet thrusters, may add quite a bit of uncertainty in the torque and force
inputs. Assumption (A2) is standard and just says that the unstable rigid-body
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modes must be controllable and observable with the set of actuators and sensors
used.

Consider the matrix [s2I + sD + A] in (5). It is diagonal, so its inverse is
simply

1 1 1 1 1

2 -1 _ 3

I4+sD4+A]"" = —— — .
[s°I+s ] dlag{s2’32’32’52+2C4w4s+w2’ ’32+2(nwns+w,21}

: (7)
The matrix By in (5) is an n X m real matrix. Introduce a polynomial s2+as+b,
Hurwitz with real zeros, and form the matrices M{(s), N{(s) as follows:

. 1 .
M(s) := mdlag{sz, 52,582,582 4+ 2qwas + Wi, ..., 8% + 2 pwns + wﬁ(} |
8
N(s) = ——B (9)
S2tast+b ©

The complex argument s is dropped hereafter to ease the notation. Note that
M and N belong to RHs and the transfer function matrix from @ to % is

G:=M qﬁl ie., ]\~J~ and N form a left factorization of G in RHo. It can be
proved that M and N are left coprime.

4 Uncertainty Modeling for LFSSs

Uncertainty in FE models is usually characterized by uncertainty in the modal
parameters {{;}7, and {w;}? 4, in the mode gains, and in the mode shape
matrix F. Unmodeled modes can also be considered as perturbations changing
the order of the model. Uncertainty in the modal parameters appears easier
to characterize based on heuristics and experience, at least for the first few
modes, than uncertainty in F. The uncertainty modeling process proposed here
uses the a priori knowledge of the bounds for {¢;}% ,, {w;}?_4. For example,
the structure designer might say with good certainty that the second mode has
natural frequency between, say, 0.01 and 0.013 rd/s, and that its damping ratio
¢ is almost surely less than 0.05. This information is used to derive a bound on
the norm of the coprime factor perturbations at each frequency, which will be
needed in the design process for robustness issues. Of course, some uncertainty is
also present in the mode shape matrix E of the structure and will be accounted
for as uncertainty in the entries of B;. We will see that it is easy to go from
parametric uncertainty to unstructured uncertainty in the coprime factors.
This section can be outlined as follows. First we start with the parametric
uncertainty model (11); this induces stable perturbations in M and N. These
induced perturbations and their corresponding perturbed factors are given the
subscript “rp” for real parameter. On the other hand, some of the results stated
apply to more general perturbations in RH,, but then the subscript is dropped.
Two scalings are performed on M5, and N, so that the perturbations are better
balanced. Finally, a third scaling normalizes the combined factor perturbations.
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It is desired to lump the uncertainty in the mode frequencies, damping ratios,
and mode gains into unstructured uncertainty in the coprime factors such that
the perturbed LCF of G can be written as

G, = (M + AM)™Y(N + AN), (10)

with AM, AN € RH,,. Perturbations in the modal parameters and the entries
of B; are assumed bounded by nonnegative numbers as follows:

~

lbwi| T, 18GI<UBe, |6bu| <, i,5=1,...,n. (11)

The following matrices will be useful later on:

[6b11 - -+ by

AByi=| @ . (12)
| 8bny -+ Sbpm,
Fl,}l---l},m

Lg:=|: . = [|. (13)
gt g

The uncertainty in the entries of B;, which are also the numerators of the
fractional entries of N, comes from different sources. First, uncertainty in a
particular mode gain can be represented as an uncertain factor multiplying the
corresponding row of B;. Second, uncertainty in the mode shape matrix E affects
B, because in the change from physical to modal coordinates in (1), the original
input matrix By gets premultiplied by ET to form Bj. Third, the matrix B,
itself is uncertain because the actuator gains are not known perfectly. Finally,
by (A3), output uncertainty is transformed into input uncertainty.

Unmodeled modes, usually (but not necessarily) occurring at high frequen-
cies, can be handled by adjusting the norm bound on the factor uncertainty
(though not necessarily at high frequencies only). This can be done iteratively:
Design a controller using the technique discussed in this paper and test it on
a set of perturbed full-order evaluation models. If all closed loops are stable
(while achieving some desired performance level in the robust performance case),
stop—the controller is satisfactory. If not, increase the norm bound on factor un-
certainty and redesign the controller.

Perturbations of the coprime factors resulting from perturbations of the real
parameters only are easily computed: The perturbed factor M. rp is defined as

M,, =M + AM,,, (14)
where

[2(45(04 + 26¢4(wy + 5(U4)]8 + 2wybwyg + 50.&
s24+as+b e
[2¢nbwn + 26n(wn + bwn)]s + 2wpbwy, + Sw?
s24+as+b ’

ey

AM,, := diag {0, 0,0,

(15)
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and the perturbed factor N, is defined as

N.,:=N+ AN,p, (16)
where
AB;
ANmp = e Th an

Now let us consider closed-loop stability of the system in Figure 2, where a
controller K is connected as a feedback around a perturbed LCF, with U and
V arbitrary transfer matrices such that no pole-zero cancellation occurs in C

when the product V(M +AM)~1(N+AN)U is formed. Define the uncertainty
matrix

=[AN —AM]. (18)

Clearly, if AM ., and AN, are substituted in (18), the resulting A,, belongs
to RHo. This matrix is defined because the result on stability of the feedback
system in Figure 2 is expressed in terms of a norm bound on A(jw) ([21], [26]).
Define the uncertainty set

+
AN O AM
+
U N Mt 1%
+
K

Fig. 2. Feedback control of a perturbed LCF model.

D, = {A € RHy | |7 Al < 1}, (19)

where 7 is a unit in He. The small-gain theorem yields the following slightly
modified result of [26] (see also [21]).

Theorem 1. The closed-loop system of Figure 2 with controller K is internally
stable for every A € D, iff
(a) K internally stabilizes VGU, and

® H [UKVI GUKV)~'M" ]

<1
(I-GUKV)- M’

[e o]
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Given the parametric uncertainty in (11), a bound of the type |r(jw)| that
would tightly cover || Ay, (jw)|| must be found. But before this weighting func-
tion is constructed, different scalings must be performed on the factors and their
perturbations to avoid any undue conservativeness and to “balance” the per-
turbations, i.e., to minimize the difference between the co-norms of AN rp and
AM .. The first scaling aims at making the components of the rows and columns
of By have the same order of magnitude.

Let B; denote the co-norm of the 5! column of B; and form

Jy :=diag{fB1,...,0m}
Now let «; denote the oo-norm of the ith row of B Js ! and form
Jy = diag{o,...,a,}.

Let v := ||J1_1L3J2_1H and define the scaled matrices B,. := 'y‘lJl_lBlJZ_l
and AB,, := vy~ 1J lABlJ{ 1 For all AB; satisfying the inequalities in (11),
|ABsc|| < 1. Finally, we can define the scaled factor and its perturbation: ‘

_ < bB
= -1yt -1 - 8¢
No=by"J 'NJ; s2+as+b’
-1 - _ bAB
AN, = by ' I AN I = T e sh

The second scaling is performed on M to make sure that the norm of any
perturbation of it induced by variations in the modal parameters is less than or
equal to one, but close to one at low frequencies. Let ¢; := 2¢;I¢, + 2l2 (ws + 1)
and d; := 2w;l}, + 132 for i = 4,...,n. These constants are the coeficients of
the numerator of the (i,1) entry of AM,, when all modal perturbations are
replaced by their upper bounds. Defining c,qq = max;—q,. . nC and dp,, =
MaX;=4,...,n di, We can now define the second scaled factor and its perturbation:

b M, AM‘r‘pO = b

dma:c maxr

MO =

AM,,.

These two scalings are best illustrated by a sequence of block diagrams,
Figure 3, showing the transformations performed on the coprime factors and
their perturbations. We have included a block for the diagonal transfer matrix
T, that models actuator dynamics. Note that the properties of linearity and
commutativity of diagonal matrices are used in order to move blocks around
and get the desired final block diagram.

It is easy to check that No and M, are still coprime and that they form
an LCF of Gy = dma,,'y_lJl_ IGJ; ! It is our experience that these types of
scalings help a lot in reducing the H, norm of the generalized plant’s weighted
transfer matrix in an actual design. The last scaling performed on the perturba-
tion Arpo := [ANypg —AM o] normalizes it with the weighting function r(s)
to get HArpoHoo < 1. This is illustrated in Figure 4.
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vJ2 and d;}, may be absorbed by the controller.

Fig. 3. Sequence of transformations applied to the perturbed factors.

We are now ready to design a weighting function R = rI for the scaled per-
turbation A, 0. In so doing, the freedom provided by coefficients of the common
denominator s2 + as + b will be used to advantage to keep the order of r as
low as possible without paying the price of added conservativeness. Here is the
result.

Theorem 2. For k > 0, define a and b via s> + as + b := (s + %ﬁ:) (s + k)
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- ClJl M;l “—QES_"‘ No Ta

Fig. 4. Perturbed factorization after all three scalings.

618+\/§+€0

, (s/k+1) ’
€0 and € are small positive numbers. Then lr~tArpolloo < 1.

and let the unit weighting function r be given by r(s) = where

This weighting function is of first order, which is a benefit considering that
it will be duplicated m + n times in the generalized plant of Figure 5. By con-
struction, for small €, €1, |r(jw)| is a relatively tight bound on | Arpo(Gw)ll,
especially at low and high frequencies.

With the unit r given by Theorem 2, the factor perturbation Arpo belongs to
the uncertainty set D, and the normalized Arpb belongs to BRHZ (m+n) Now
introduce a normalized scaled perturbation Ao € BRHS (m+n)  Then letting
4y = rAy, one obtains that A is a free perturbation in RH (m+n) with
|l Ao(jw)lf < |r(jw)l, Vw € R, i.e., Ao is an arbitrary element in D, In this way
r can be included in the generalized plants of Figures 4 and 5. Figure 5 shows
the scaled closed-loop system with all the weights for designing a controller
K providing robust stability and nominal performance. Notice that the control
input is usc, a scaled version of u. This block diagram and the associated control
design problem will be discussed in the next section. According to Theorem 1,
our robust stability objective will be to minimize the co-norm of the map w — z;
to a value no more than 1 over all stabilizing controllers.

5 Robust H, Design

Consider first the problems of attitude regulation and vibration attenuation.
For these problems, it makes sense to ask for good torque/force disturbance
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rejection at low frequencies as a first requirement for nominal performance. For
example, this may be required on a flexible space station on which there may be
large robots or humans producing significant torque disturbances. As a second
requirement for nominal performance, we will ask for good tracking of reference
angle trajectories to allow accurate slewing maneuvers of the rigid part of the
" structure. These requirements can be translated into desired shapes for the norms
of the sensitivity functions S, := 7 — e and Sgp, := d — yp, where r is the
vector of input references, ep, is the vector of attitude angle errors for the rigid
part of the structure (the h subscript stands for hub, the rigid part of Daisy),
d is the vector of external torque/force disturbances, and yp = [fhs Ony Onz]T
is the vector of attitude angles of the rigid part. Note that if we define S, :=
r — e, where e is the vector of all position/angle errors, and S3 := d — vy,
then S, = [I3x3 03x(p_3)] S, and Sgp = [I3x3 03,((,,_3)] S4. These frequency-
domain specifications are well-suited for the H, design method (see e.g. [10])
or a pu-synthesis [2]. Here we discuss the H, approach.

[ 2 ]

Fig. 5. Generalized plant with scaled perturbation and controller for Ha design.

The block diagram of Figure 5 shows the interconnections between the scaled
factors and their perturbations, actuator dynamics, scaling and output matrices,
controller, and weighting functions that form the controlled perturbed general-
ized plant used in the Ho, design. The weighting function W, taken to be of
the form W, := qw [Isx3 O3x(p-3)|, where ¢ > 0, will allow us to shape the
sensitivity functions as desired. Note that the signals w, 21, and 23 do not have
physical interpretations, but r, d and e do, as previously defined. The input
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signal u is just a scaled version of the physical signal u: u,. := ﬁ:Jzu.
In terms of Figure 5, we consider the design problem

Design a finite-dimensional, proper, linear time-invariant controller K
such that for 49 = 0, the nominal closed loop of Figure 5 achieves
llw = 2]l < 1.

A solution to this achieves robust stability and nominal performance in the
following sense.

Theorem 3. Assume C; is right invertible and let CI be a right inverse of C;.
Let ¢ = max {||1\~/I0J1_10{Hoo, d;}lzllJlelll}. If the controller K is internally
stabilizing and achieves
- [2)
w —
zQ o0

then the closed-loop system of Figure 5 is robustly stable to all perturbations
Ag € BRHY ™) and for every w € R we have

ISan(Ge)l < lw™ (jw), (21)
I1Srh Gl < [w™ (jw)| - (22)

<1, (20)

The choice of q in Theorem 3 may be used for a first design to get insight
into the tradeoff between robustness and performance, but smaller values of g
may be tried to reach a satisfactory design achieving (21) and (22).

Other forms for W, may be used to achieve other objectives such as weight-
ing some or all of the outputs corresponding to the flexible part of the structure.
Then it is easy to see that Theorem 3 remains basically the same, and partic-
ularly the expression for g is unchanged. In our experiments with Daisy, it was
found that weighting all the outputs was asking too much given the uncertainty
in the model and the actuator saturation levels. Hence only the hub angles were
weighted with W, as above. In any case, the modal coordinates are weighted
by r (see Figure 5), which in our experiments on Daisy resulted in sufficient
vibration attenuation.

To recap, if a stabilizing K satisfying (20) has been designed, it follows that
(¢) K provides robust stability to all perturbations of the modal parameters
satisfying (11) and (#%) K provides nominal performance in the sense that in-
equalities (21) and (22) hold. Note that the controller K, to be implemented on
the real system is a scaled version of K, i.e., K, = QH}YMJ{ K.

6 H. Design for Daisy

The dynamic model available for Daisy is of 46t order, including 20 flexible
modes with frequencies ranging from approximately 0.56 rad/s to 0.71 rad/s and
damping ratios from 0.015 to 0.06. The modal parameters are listed in Table 1
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with crude approximations of their uncertainties obtained simply from looking at
time responses. Some of the modes are multiple. Two of the rigid-body modes are
pendulous, so they can be considered as flexible modes; they both have nominal
frequency 0.29 rad/s and their nominal damping ratios are 0.11 and 0.09. The
model has the form of (3). The method described in Section 5 is illustrated by
designing a robust controller for colocated and non-colocated configurations of

Daisy using the H, design method.

mode 7 |frequency w; (rad/s)|damping ratio ¢;
1 (rigid) 0 0

2 (rigid)|_ 0.286 £ 10% 0.11 + 50%
3 (rigid)|  0.293 £ 10% 0.09 % 50%
4 (flex.)| 0.568 + 10% 0.025 £ 50%
5 (flex.) | 0.568 £ 10% 0.02  50%
6 (lex.) |  0.569 £ 10% 0.03 £ 50%
7 (flex.) 0.569 £ 10% 0.02 + 50%
8 (flex.) | 0.569 £ 10% 0.035 £ 50%
9 (flex.) 0.569 £ 10% 0.025 + 50%
10 (Aex.)|  0.569 £ 10% 0.02 £ 50%
11 (fex.)| 0572 % 10% 0.02 £ 50%
12 (Aex.)|  0.502 £ 10% 0.06  50%
13 (flex.)]  0.593 £ 10% 0.06 £ 50%
14 (flex.) 0.657 + 10% 0.015 + 50%
15 (flex.) 0.657 + 10% 0.015 + 50%
16 (flex.) 0.657 £ 10% 0.02 & 50%
17 (fex.)|  0.657 £ 10% 0.02 £ 50%
18 (flex.) 0.657 + 10% 0.027 + 50%
19 (flex.) 0.657 + 10% 0.025 + 50%
20 (flex.) 0.657 + 10% 0.02 + 50%
21 (flex.)]  0.670 £ 10% 0.04 £ 50%
22 (flex.)| 0672 10% 0.05 + 50%
23 (flex.)|  0.714 £ 10% 0.015 + 50%

Table 1. Modal parameters of Daisy’s model.

Here we consider only colocation, by which we mean that all rotations and
displacements produced by the actuators at their locations are measured. Thus
23 actuator/sensor pairs are used, namely the 20 bidirectional rib thrusters with
the DEOPS system measuring the 20 rib angles, plus the three hub reaction
wheels with the three corresponding angle encoders. In terms of system equations
(3) and (4), the inputs are u = [The Thy Thz Tr1 Tra - - Tr20] ¥, where the first three
are the hub torques around the z, y and z axes, and the last twenty inputs are
the rib torques given by

. {rib (¢ + 1)/2 out-of-cone torque, i odd,
rT —

rib /2 in-cone torque, i even. (23)
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All torque inputs are expressed in Nm. The input matrix B; € R%3%23 i3 agsumed
to have up to 8% uncertainty in its entries. Note that the torque wheels have
some dynamics, i.e., for each wheel, the transfer function between the desired
and produced torques is first-order and strictly proper. On the other hand, the
PWM thrusters, which deliver average torques close to the desired ones, are
modeled as pure gains. Overall, the transfer matrix T, in Figure 5 is taken to

be
. 0.01s+1 0.01ls+1 0.01s+1

To=di {0.36s+ 10365 +1' 0365+ 1 " ’1} ’
where the the terms 0.01s are added in the numerators to regularize the gen-
eralized plant for the H,, problem, and the 0.36 time constants were measured
experimentally. Note that T, commutes with J;. The outputs are the angles
Y = [OrzOnyOrz0r10r2- - 6,20] T, which correspond to the input torques described
above. The output matrix is just the mode shape matrix C; = E € R%*23 which
is invertible. All angles are expressed in radians. Finally, A = diag{w?, ... ,wis}
and D = diag{2¢iw1, - .-, 2{23w23}, where the modal parameters are those given
in Table 1. A plot of the 23 singular values of C1G(jw) is shown in Figure 6. It
turns out that all the modes are significant and as a result it is very difficult to
reduce the number of modes in the model. This was concluded from an analysis
of the Hankel singular values of a normalized coprime factorization of the plant
model C1G [22]: They all lie between 0.2 and 0.9, which indicates that the model
should not be reduced. Consequently, our design model includes all the modes in
Table 1. It should be noted that this method of characterizing the input/output
influence of the modes in the model seems appropriate for our control design
method based on a coprime factorization. It avoids the singularity of measures
such as modal costs [24] and Hankel singular values of the plant [12] when the
damping ratios go to zero.

It is desired to control Daisy’s model so that it remains stable for all bounded
perturbations of the modal parameters in Table 1 and all perturbations of the
entries of B; within 8% of their nominal values. We also want good torque/force
disturbance rejection and good tracking in the sense of (21) and (22). The di-
agonal scaling matrices J; and Jo are computed as explained in Section 4. The
constants and weighting functions are

(24)

dros = 0.107,  Crmag = 0.046, k=792 =043, =079, ¢ = 1000,

d'ma:l:

100
w(s) = 770012 + 2 x 0.75/0.01 7 1 (25)
r(s) = 20018 +1415 (26)

2.33s+1

Computational delay and zero-order hold models were not included in the
generalized plant even though both were present in the digital implementation
of the controller on Daisy. It was anticipated that the design would be robust
to these unmodeled dynamics; this was borne out by experiments. No antialias-
ing analog filters were available to filter the measured hub angle signals, nor
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Fig. 6. Singular values of C1G(jw).

for DEOPS signals, which are inherently digital. Even though this is rather
undesirable, high-frequency noise levels seemed sufficiently small to avoid seri-
ous aliasing problems in the exjperiments. The H, design was carried out in
MATLAB™ using the p-Tools™ [2] command hinfsyn. If a realization of the
generalized plant is obtained using a computer, it will in general be nonminimal
because pole-zero cancellations might not be carried out. Also note that the gen-
eralized plant is unstable, so one cannot use the balanced truncation method [23]
to get rid of the unobservable and uncontrollable modes. Therefore we used the
decentralized fixed-mode method [9] to obtain a minimal realization, reducing it
from 147 to 78 state variables, which equals its McMillan degree. This method
has the advantage of being computationally simple and hence more reliable for
such large systems. .

A stable suboptimal controller achieving |jw — 2]l = 0.94 was obtained.
Its order was the same as the order of the minimal generalized plant, i.e., 78,
but a balanced truncation reduced it to 55 state variables without affecting
the closed-loop co-norm. With this reduced controller K 1, Figure 7 shows that
required performance has been attained, i.e., ||Sy4(jw)| and [|San(jw)|| are less
than |w~!(jw)|, as desired. The least-damped closed-loop mode has a damping
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ratio of 0.38.
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Fig. 7. Norms of San(jw) and Sru(jw) for K.

The 55t"-order controller K| was rescaled to K1 = iﬂ‘mJ{ 1K, a controller
using the actual rib and hub angles to compute actua‘{ rib and hub control
torques. Then, since the implementation of the controller must be digital, Kp;
was discretized at a sampling rate of 10 Hz using the bilinear transformation;
call the resulting controller Kp14. Another discretized version of the controller
was computed using the MATLABTM function c2d —it destabilized Daisy both
in simulations and experiments. The ¢2d function performs the discretization
by placing a sampler at the output of the controller and a zero-order hold at
the input. The frequency responses of Kp; and K14 were close up to 10 rad/s,
whereas for the controller discretized with c2d, the frequency responses started
to differ significantly from 1 rad/s. The 10 Hz sampling rate was almost the
highest achievable on the real-time control computer system with our control
software. An earlier version of the program allowed a maximum sampling rate of
5 Hz only—when used to implement a discretized version of K;, it destabilized
the closed loop. This suggests that an H.-optimal sampled-data design might
be warranted here, but this is left for future work.



6 Hoo Design for Daisy 133

We used the following hub torque disturbance profile for all tests:

Ag, if0<t<T
—-1.544,if T<t<2T
0, else.

It can be applied by any of the three torque wheels, individually or in any
combination. Notice that this disturbance is completely specified by three pa-
rameters: the amplitude of the first torque pulse, Ag; the duration of the first
and second pulses, T; and the combination of hub axes around which the dis-
turbance is applied, azes. This latter parameter can take on values in the set
{z,y,2,zy,x2,y2, zyz}. With these definitions, let us denote the disturbance as
D(Ag4,T,azes). The controller is switched on after the hub angle experiencing
the largest deviation changes sign. Thus the disturbance has roughly the effect of
a torque impulse applied to the hub because the controller starts when the hub
angles are small while the angular velocities are large. However, the rib angles
may not be small at switch-on time. Although experimental controller perfor-
mance would be best assessed by performing frequency-response experiments
and comparing with Sg;,(jw), these are certainly not practical for LFSSs. But
the torque impulse response matrix is just the inverse Laplace transform of the
sensitivity S4. Hence this provides some motivation for judging and comparing
controller performance using time responses of the rib and hub angles to the
disturbance D(Aq, T, axes). For all the plots, ¢t = 0 corresponds to the instant
at which the controller is turned on.

As a benchmark, an open-loop response of Daisy to D(13.5Nm, 2s, z) is plot-
ted in Figure 8 along with a simulated continuous-time response of the nominal
model C1G. Discrepancies between some of the actual and nominal modal fre-
quencies and damping ratios can be observed from these plots, illustrating the
uncertainty in the model.

All simulations are linear and discrete-time with the plant model (including
actuator dynamics) discretized at 10 Hz using c2d. As a typical test run, for the
torque disturbance D(13.5Nm, 2s, ), Figures 9 and 10 show respectively the hub
and rib angle responses, while the hub control torques are plotted in Figure 11
and the rib control torques are in Figure 12. When compared with the response
in Figure 8, it is clear that the My, controller vastly improves the dynamics
of Daisy. The experimental response of Ory has a slightly longer settling time
than its simulated counterpart. The rib responses are quite consistent with the
simulated ones, showing actual performance very close to the nominal. This is
in spite of rib torque saturation, which occurred for the first two seconds.

In conclusion, the experimental data show that the Hoo controller Kp 4 de-
signed using the coprime factorization method performed quite well. No ezperi-
mental tuning of the controller was necessary, which shows evidence of robustness
of the design.



134 B. Boulet, B.A. Francis, P.C .Hughes, T. Hong: Control of Daisy

Simulated hub response " Simulated rib 1 response
0.1 0.1
@ G
'§ 0.05 &
B g
[} o] K
2 5
[ 3]
§ -0.05 § -0.05} /'
o - 8 :—
~0.1 -0.1 - <
(o} 20 40 60
Time (s) Time (s)
Experimental hub response Experimental rib 1 response
0.1 0.1 -
- —
§ 0.05 é 0.05
ok 8
2 2 O
g—o.os g
Qo o |
£ -0.1 [ 0.05
-0.15 -0.1

Time (s) Time (s)

Fig. 8. Simulated and experimental open-loop responses of Daisy to D(13.5Nm, 2s, z).

7 Conclusion

A new approach introduced in [3] to the robust control of LFSSs using a co-
prime factor description of the plant’s dynamics was presented. This approach
first involves the transformation of a natural description of the uncertainty as
bounded perturbations of the modal parameters of an original FE model into
norm-bounded stable perturbations of a nominal coprime factor pair. This new
unstructured description of the uncertainty is not overly conservative in terms of
real perturbations of the modal parameters, and it can also represent unmodeled
dynamics. Moreover, the Ho, and p-synthesis controller design methods can be
used with this type of uncertainty, and lead to computationally tractable prob-
lems despite the high order of LFSS dynamics. To illustrate the technique, an Hoo
controller was designed for Daisy. This model has significant parameter uncer-
tainty, yet the controller designed using the coprime factorization technique was
quite robust and achieved good performance levels in terms of rejection of hub
torque disturbances. Furthermore, the controllers were stable, which is a desir-
able property. Extensive experimentations showed that digital implementations
of the Hoo controller performed very well without the need of any experimental
tuning. Further work is underway to include nonlinearities and sampling issues
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Simulated closed-loop hub angle résponses to hub torque disturbance
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Fig.9. Simulated and experimental closed-loop hub angle responses with Kpiaq,
D(13.5Nm, 2s, y).

into the design technique.
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