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Abstract

A basic requirement of robust control theory is that a
nominal model and an uncertainty model be available
for the plant. The assumption is that the plant can
be modeled by at least one of the perturbations of the
nominal model in the uncertainty set. This raises the
problem of constructing such an uncertainty set that
would be consistent with a given set of experimen-
tal input-output data. This paper introduces neces-
sary conditions for the model/data consistency problem
with coprime factor uncertainty and noise-free closed-
loop frequency-response measurements. The necessary
conditions involve the computation of singular values
of complex matrices associated with the measurement
frequencies. Standard factorizations and left-coprime
factor models of large flexible space structures are con-
sidered.

1 Introduction

The closed-loop model/data consistency problem for a
family of coprime factorizations is more difficult than
the open-loop one, but potentially very useful. Many
systems are very lightly damped or unstable, and per-
turbed coprime factorizations are often a good choice
to model them [6]. However, it may prove impossible to
run open-loop frequency-response experiments on these
systems, so the open-loop results for model/data con-
sistency given in (2], [4] and [5] may be of limited use.
In this paper, it is assumed that a stabilizing controller
providing sufficient damping was implemented on such
a system, allowing measurement of the closed-loop fre-
quency response at distinct frequencies. These mea-
surements can be used to refine the norm bound [r(jw)|
on the coprime factor uncertainty. This improved char-
acterization of the uncertainty in the model allows the
design of a better controller achieving desired robust
performance goals.

Necessary and sufficient conditions for consistency of
the model with closed-loop data are more difficult to
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find than in the open-loop case. The reason is that we
must not only show the existence of a stable pertur-
bation of co-norm less than one interpolating a set of
complex matrices, but we must also show that there
exists such a perturbation that stabilizes the nominal
closed-loop system. That is, we must find a strongly
stabilizing perturbation in the uncertainty set inter- -
polating the frequency-response data. Thus, we will
only give necessary conditions for the problems formu-
lated. Assume that we have N noise-free frequency-
response data points measured at N distinct frequen-
cies. A necessary condition for the noise-free coprime-
factor model/data consistency problem is given as a
simple test consisting of computing minimum-norm so-
lutions to N underdetermined linear complex matrix
equations, just like the open-loop case in'[2]. For the
case of a special factorization for a square p x p large
flexible space structure (LFSS) introduced in {3], a nec-
essary condition based on the Schmidt-Mirsky Theo-
rem is derived. It requires the computation of the pth
singular values of N complex linear fractional transfor-
mations (LFT). The theorem on boundary interpola-
tion in RM o in [2] is used in those two cases. A numer-
ical example using a left-coprime factorization (LCF)
of Daisy, an LFSS experimental testbed, is worked out
to illustrate the results.

Notation
Let H be an n X m complex matrix with singular val-
ues gy > -+ > 04, ¢ = min{m,n}. The maxi-

mum and minimum singular values of H are written
as o(H) = o1 and g(H) = o, respectively. Its range
is denoted as Ra{H}. The norm of H is taken to be
its maximum singular value: ||H|| = ¢(H), and H*
is its conjugate transpose. The space Hoo is the class
of functions analytic in the open right half-plane and
bounded on the imaginary axis with norm defined as
1Qllc = supyer [IQ(jw)ll- RHoo is the subspace of
real-rational functions in He,. For a normed space
X, BX denotes its open unit ball. A function in He
(RHoo) is a unit if its inverse also belongs to Heo
(RHo)- Upper and lower linear fractional transfor-
mations are denoted as Fy(P,K) and Fr(P, K), re-
spectively.



Figure 1: Feedback control of a perturbed LCF model

2 Problem Statement

Let us consider the model/data consistency problem for
a closed-loop finite-dimensional linear time-invariant
system. The data set consists of N complex matri-
ces (or complex scalars for SISO systems) obtained by
running noise-free closed-loop frequency-response ex-
periments on the closed-loop system at N distinct fre-
quencies. The uncertainty set is composed of norm-
bounded factor perturbations in RH ..

Let the open-loop nominal plant model G be a proper
real-rational transfer matrix. Let the square, invertible
M and N in RH be left-coprime, C be an output
transfer matrix and J be a diagonal input transfer ma-
trix, both in RH, such that the nominal plant model

can be factorized as G = CM _1]§J J. The matrices C
and J are included for compatibility with the special
factorization for large flexible space structures intro-
duced in [3]. When set to identity matrices, a standard
left-coprime factorization of G is obtained. Let the
perturbed open-loop plant model G, be expressed as a
perturbed factorization with M,, N, € RH,

G,=CM, N,J, )

where M, = M+Ay, N,=N+Ay, Ay, Ay €
RHoo. Define the uncertainty matrix A := [Ay—Ap].
Clearly, A € RH,. Define the uncertainty set

Dri={AERHa : Al <1} (2)

and the family of plants

P:={G, : AeD,}, 3)
where 7 is a unit in RH,. The unit r character-
izes the size of the uncertainty in the coprime factors
at each frequency w because ||[r 'A|lcoc < 1 implies
NA(jw)|| < |r(jw)|. Assuming that K internally sta-
bilizes G, we have from [6] the result that the closed-
loop system of Figure 1 with controller K is internally
stable for every G, € P iff

.| JKC(U - GiKkC) i
(I-GJKC)'M ' 5

sult provides the main motivation to make r as small

as possible.

< 1. This re-

Figure 2: Feedback configuration for input tracking or
disturbance rejection.

In order to be able to use this robust stability result in
the design of a robust controller for a real plant, one
has to construct and modify the bound |r(jw)| until it
properly captures the uncertainty in the physical sys-
tem. One way to do this is to start with a nominal
model and a first approximation for r, and then use
experimental data to check if |r(jw)| is large enough
to account for the full data set. The necessary tests
proposed in this paper are suitable for that purpose.
The generic closed-loop model/data consistency prob-
lem considered here can be stated as follows: Given
noise-free frequency-response data {®;}¥, obtained
on the closed-loop system at the distinct frequencies
wi,.-.,wn, could the data have been produced by at
least one plant model in P? Note that it is assumed
throughout that the plant and the controller are linear.

3 Necessary Conditions for Consistency

Consider the feedback system in Figure 2. Two con-
trollers were included in order to treat the two differ-
ent configurations of input tracking (K, = I,) and
input disturbance rejection (K> = I,,,) in a unified
way. The tracking configuration is generally used to
ensure that the output of the plant y(t) € RP tracks
the reference input v(t) € RP over a given frequency
band. On the other hand, the input disturbance rejec-
tion configuration is used to attenuate the effect of an
input disturbance v(t) € R™ on the output of the plant
y(t) € RP. This configuration may facilitate frequency-
response experiments on a mechanical system with a
force/torque input v that can be applied by control
actuators or external ones.

3.1 Standard Factorization

Here we treat the case of a standard LCF of G, i.e.,
J = C = 1I,  Let the transfer matrix from v to y
in Figure 2 be denoted as T'. Then the closed-loop
equation is

T = (I+G,K:K\)"'G, K>

= (M+Ay+NK:K,+ANK: K1) /(N + ANK .

After rearranging this equation, we get
ANK,(I~-K:T)—AuT = MT+NK(K.T-1I). (5)

We now state the model/data consistency problem for

‘closed-loop frequency-response data for a feedback con-

trol system as in Figure 2.

2860



Problem 1 We are given mnoise-free closed-loop
frequency-response data {®;}., obtained on the
closed-loop system of Figure 2 at the distinct frequen-
cies wy, ... ,wy. Could the data have been produced by
at least one plant model in P?

A necessary condition for this question to have a posi-
tive answer can be obtained using exactly the same pro-
cedure as in the open-loop case [2]. For a measurement
frequency w, let U := [MT+NK(K1T—1)](jw) and

_ | K2(I-KiT)
W .= T

w can be written as

(jw). Then (5) at frequency

AW =U , (6)

where W € Cmt9)xe [ ¢ CP*P and A € Cpx{m+p)
for the tracking configuration, and W & C(m+p)xm
U e CP*™ and A € CPX(M+P) for the input distur-
bance rejection configuration. Equation (6) is an un-
derdetermined system of linear equations over the field
C. Let A; := A(jw;) for ¢ = 1,...,N, with similar
definitions for W; and U;. Note that U} C Ra{W;}},
so there exist an infinity of solutions to (6). If W; does
not have full column rank, then the redundant equa-
tions can be deleted from (6). After these equations
are removed, the new W; has full column rank. Then
the matrix equation (6) can be solved with T' = ®; for
a minimum-norm A;, i =1,..., N, for example with

Ay = Ug(WrW) Wy . (7)

The following theorem gives a necessary condition for
consistency of the perturbed coprime factor model of
the plant with the closed-loop frequency-response data.

Theorem 1 The mnoise-free closed-loop model/data
consistency problem of Problem 1 has a positive answer
only if ||As|l < |r(jwi)| foralli=1,...,N.

Proof Problem 1 has a positive answer only if there
exists a perturbation A € D, interpolating A; at w;,
i =1,...,N. As in the proof of Theorem 2 in [2], such
a function exists iff [|A;|| < |r(jw;)| fori=1,...,N.

Just as in the open-loop case, the bound |r(jw)| can
be adjusted such that the inequality in the theorem
statement is satisfied for all 4. This is necessary for the
new model to be consistent with all the data.

3.2 Special Factorization for LFSS Models

We now derive a necessary condition for consistency
of a factorization of a square, p-input, p-output LFSS
model introduced in [3] with closed-loop frequency-
response data. More specifically, the factorization of
(1) will be used. We consider the setup of Figure 2 for
tracking or input disturbance rejection. Two standing
assumptions in this section are the following;:

2861

(A1) [N,, —M,,] (jw) has full row rank for all A € D,
and for all w € R.

(A2) For all A € D,, no pole-zero cancellation occurs
in C when the product CM ! is formed.

Motivation for (Al) is now discussed. It was
found empirically that the minimum distance between
g{[N —M] (jw)} and |r(jw)| across frequency for
an LCF of Daisy is a good a prior: indication of the
achievable robustness and performance levels with a
controller to be designed. The closer this minimum
distance was to zero, the harder it was to achieve the
performance specification while maintaining robustness
to the uncertainty in the modal parameters. If this
distance is greater than zero, then the full row rank
assumption above is satisfied. Another way to state
(A2) is that the pair (C, M) is right-coprime for ev-
ery A € D,. This assumption is quite mild; without
it, robust internal stability for all A € D, could not be
achieved.

The main result of this section is Theorem 2 which

gives a necessary condition for a positive answer to the
noise-free closed-loop consistency problem for flexible
systems, Problem 3. Consider the following consistency
equation at frequency w illustrated in Figure 3, where
the input transfer matrix J has been absorbed into K»:

- - - - -1
o [1+C(M+rAM)‘1(N+rAN)K2K1] (8)
'C(M-FTAM)_I(N +7‘AN)K2 =0.

It is assumed that:

(A3) K:(jw) is nonsingular for all w € R,

(A4) the combination of K; and K internally stabi-
lizes the plant and its nominal model,

(A5) n > p, i.e., there are more modes in the model
than there are inputs (and outputs),

{A6) C has full row rank.

Assumptions (A5) and (A6) hold for most LFSS or
experimental testbeds and are not really restrictive.
Some motivation for these two assumptions is provided
by the following observation. Referring to Figure 3, we
can see that a necessary condition for consistency is
that the columns of the p x p matrix (® — Haz) lie in
Ra{H21} where Hy; is p x n. But we have to assume
that ® — Hs, is nonsingular for Lemma 1 to hold true,
so it follows that Hy; must have full row rank p. This
is turn implies that we must have n > p.

In LFT notation, Equation (9) takes the simpler form:



Figure 3: Block diagram of consistency equation for
a noise-free feedback-controlled MIMO flexible
system.

® - Fy(H,4A) =0, (9)
where °
H
H:= H(jw) = u 12 ] ,
() [ Hy Hi
Hyp = _T(I+K2K10M~1N)_1K2K10M‘1
e r(I+ M7 INK K C) ' M~} ;
g | I+ KKaCMTIN) K
BT I+ M NKKAC)T UM TINK, |
Hy = (I + Cﬂff_llingKl)_ICI\:J‘17~
Hyy = (I+CM ™ 'NK>,K;)"'CM™'NK, .

This general feedback configuration includes as spe-
cial cases the reference tracking configuration (K; =
I,), and the input disturbance rejection configuration
(K3 = J). The consistency problem at frequency w

can be stated as follows.

Problem 2 Given an invertible, noise-free, closed-
loop frequency-response datum ® € CP*P at w, does
there ezist a A € BCY(+P) guch that I — Hj1 A is
nonsingular and ® — Fyy(H,A) =02

But the more general model/data consistency problem
that we want to solve here is the following.

Problem 3 Given invertible, noise-free, closed-loop
frequency-response data {®;}N| C CP*P at the distinct
frequencies wn,...,wn, could they have been produced
by at least one model in P?

We first look for a solution to Problem 2. Re-
call that K, is assumed to have full rank in (A3),
and hence H;s has full column rank. Let HIQ €
CPr*(P+n) be the Moore-Penrose left-inverse of Hyz. It
is easy to show that the left-nullspace Np{Hi2} =
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row span ([N —-M]) We have the following lemma

whose proof closely parallels the proof of Lemma 4 in
[2] (see [1] for a complete proof.)

Lemma 1 For w € Ry, we are given the invertible
frequency-response datum & € CP*P. Assume ® — Hap
is invertible and I — H11A is nonsingular. Then for
A € BC*®+n) | the following consistency conditions
are equivalent. _

(a) ® — Fy(H,A) =0

(b) (H}2 ~Q[N -m ]) [I-fL(H,cp—l)A] =0
for some Q € CP*"

(¢) rank [I _ Fu(H, qu)A] <n

This result leads us to the following minimization prob-
lem already encountered in [2].

Problem 4 Compute 8 :=
inf { & : rank {1 - Fo(H,87 A} < n, B e X0}

A solution to this problem is readily given by Theo-
rem 7 of [2): B = o,[Fr(H,® )]~}. The only differ-
ence with the open-loop case of {2] is that the nonsin-
gularity of I— Py; A for all A € BC**("+P) was guaran-

teed by the assumption that o [M(jw)] > |r(jw)l, Vw.

Here, nonsingularity of I — Hy1 A for all A € BC*(n+p)
is equivalent to robust stability of the closed-loop sys-
tem of Figure 3 with the constant matrices replaced by
their corresponding transfer matrices. This is certainly
too strong an assumption. Indeed, if the combination
K, K is already a controller providing robust stabil-
ity, why bother refining the model to design a new ro-
bust controller? Instead, we will show in the following
lemma (Lemma 2) that if the factor perturbation A
renders the matrix J — Hy; (jw)A singular, then 3A,
as close to A as desired and with the same properties,
but that makes I ~ H11(jw)Ap nonsingular. This is
the last technical result needed before we can give a
solution to Problem 2. The proof is rather long and
hence not given here (see [1].)

e BCrx(n+p)
=n and I — Hy A is sin-

Lemma 2 Suppose that for A
rank {I — Fi(H, <I>~1)A}
gular. Then for € > 0, there exists a Ao with ||Ag —
Al < € such that rank{I— }"L(H,Q_l)[&()} < n and

I — Hi1Aq is nonsingular.

We are now in a position to establish the following re-
sult which provides an answer to Problem 2, the noise-
free closed-loop MIMO consistency problem for square
flexible systems at a single frequency. The proof [1]
makes use of the solution to Problem 4 given above.



Lemma 3 For an invertible mnoise-free frequency-
response datum ® € CP*P  obtained at fre-
quency w, Problem 2 has a positive answer iff
ap [FL(H, @ 1)) < 1.

Finally, a necessary condition is given for the noise-
free closed-loop MIMO consistency problem for square
flexible systems, Problem 3. The proof can be found in

[1].

Theorem 2 The closed-loop model/data consistency

problem of Problem 8 has a positive answer only if

op {Fi [H(jw:), 8]} <1 foralli=1,...,N.

The condition in Theorem 2 is obviously not sufficient
as A must also be stabilizing.

3.2.1 Numerical Example: The plant model
is for Daisy, an LFSS experimental testbed. The
perturbed coprime factor model of Daisy developed
in [3] for the collocated Ho controller design will
be used. ’I;h~e nominal factorization has the form
G = CM NJ where M, N € RH>2*? J ¢
RH23% is diagonal, C' € R?**23. The unit bounding
the factor uncertainty is r(s) = 282&tAld. One of
the plant models in P was randomly selected to be the
actual plant G, and a simple decentralized 23"%-order
controller K; was designed to stabilize it, as well as
the nominal plant model. This controller is composed
of 23 first-order lead compensators implementing local
feedback loops. The noise-free frequency-response data
{9322, c C¥*2 computed at 50 distinct frequencies
between 0.001 rad/s and 10 rad/s were generated for
the input disturbance rejection closed-loop configura-
tion with G, and K;. Note that Assumption (Al)
was satisfied. The necessary condition of Theorem 2
is tested by computing o3 {fL [H(jw,—), <I>i_1] }—1 for
i =1,...,50 and checking that all these numbers are
less than 1. The results plotted in Figure 4 show that
the necessary condition has been satisfied. Hence the
model was not invalidated. This had to be expected
since the data were generated by an admissible plant
in P.

4 Conclusion

Solutions to the closed-loop model/data consistency
problem for coprime factorizations were shown to be
difficult to obtain, but potentially very useful for unsta-
ble or lightly-damped systems. The noise-free closed-
loop multi-input, multi-output consistency problem
was studied. For a standard left-coprime factorization,
a necessary condition was given as a simple test con-
sisting of computing minimum-norm solutions to un-
derdetermined linear complex matrix equations, as in
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Figure 4: Test of necessary condition for consistency with
023 {Fr [H(jw:), @711} 7.

the open-loop case. For an left-coprime factor model of
an LFSS, we gave a necessary condition based on the
Schmidt-Mirsky Theorem. In both cases, the bound-
ary interpolation theorem of [2] was invoked. Sufficient
conditions for the closed-loop model/data consistency
problem will be given in a separate paper.
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