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Abstract

In this paper, we investigate a discrete-time approach to un-
certainty modeling for robust control. We show via simula-
tions of one LTI system and experimental data from a one-
tank test-bed that a current technique for time-domain uncer-
tainty modeling leads to a feasible linear program. Hence, it
is useful for developing robust control solutions.

1 Introduction

Model validation is an important step in developing strate-
gies for robust control. This step is typically preceded by
system identification, as well as, system analysis and physi-
cal modeling. Model validation is concerned with assessing
whether a given nominal model can reproduce data from a
plant, collected after some initial experiments to obtain esti-
mation data [1]. The model validation problem is really one
of model invalidation since a given model can only be said
to be not invalidated with the current evidence. Future evi-
dence may invalidate the model.

The motivation for this study is to investigate whether a
time-domain approach to uncertainty modeling for linear
time-invariant (LTI) and linear time-varying (LTV) systems
developed by Poolaet al. [4] can be implemented for robust
control applications. While the work provided theoretical
development for their approach to uncertainty modeling, it
did not provide any simulated example or experimental ap-
plication to verify their theory is numerically tractable.

To date, the authors are not aware of any simulation study or
application to experimental data of Poolaet al.’s [4] work.
However, a sampled-data approach to model validation de-
veloped in [2] was successfully tested by simulation [2] and
experimental data [5]. As such, in this paper, we investigate
the feasibility of the approach of [4] to experimental data by
first studying the behavior of this technique on one simulated
causal, LTI system for�1 control and applying this approach
to experimental data from a one-tank test-bed.

Our results show, this approach to uncertainty modeling pro-
vides a numerically tractable solution for noisy simulated
data as well as for experimental data.

2 Problem Statement

We considered the class of uncertainty models described by
an output multiplicative uncertainty, as

y�k� � �G0�G0W∆�u�k��d�k�; d is in a convex set (1)

whereu�k� andy�k� are the input-output measurements,G0
a causal, LTI nominal model,W a causal, LTI normalized
uncertainty filter,∆ � �1 a normalized system uncertainty
andd � D :� fd � �∞�0� � � � �M � 1� : kdk∞ � 1g, a noise
or disturbance acting on the system. The uncertainty fil-
ter W is selected so thatjW� jω�j is an upper bound on

j
Gp jω��G0 jω�

G0 jω� j whereGp is the perturbed model. Although
∆ is assumed norm-bounded in�1, this uncertainty struc-
ture was selected because it may be capable of describing
model mis-specification due to unmodeled dynamics, noise
and other disturbances. [6].

Therefore, the model validation problem for this class of
uncertainty is stated as [4]: Given input-output sequences
u � fu0�u1� � � � �uN�1 � ℜ g andy � fy0�y1� � � � �yN�1 � ℜ g
there exists a stable causal, LTI operator∆ with

k∆ki∞ � γ where k � ki∞ denotes�∞� induced (2)

such that∆�û0� û1� � � � � ûN�1����� � � �� � �ŷ0� ŷ1� � � � � ŷN�1�

���� � � �� if and only if the following linear programming
problem is feasible [4]

LP�û� ŷ�q�γ�� (3)

where ˆu�k� �πNWG0u�k�, ŷ�k� � y�k��πNG0u�k� andq�k�
the system errors which encompass both the effect of model
uncertainty and noise inπND andπN is the truncation oper-
ator keepingN data points [4]. Since the uncertainty filter is
normalized the criterion for assessing model invalidation is
γ� 1.

3 Procedures

The efficacy of this model invalidation algorithm was as-
sessed using (i) noise corrupted data from a simulated
second-order system but nominal model identified as a first-
order model and (ii) experimental data from a one-tank test-
bed. The simulated system,H1�z�, and nominal model,
Ĥ1�z�, used in study are

H1�z� �
0�2z�1�0�08z�2

1�0�42z�1�0�32z�2 Ĥ1�z� �
b1z�1

1�a1z�1 � (4)
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First, we assessed the performance of this technique us-
ing twenty Monte-Carlo simulations in which each input-
output realization was unique, and had a unique, white, zero-
mean, random noise sequence added to the output; with
�∞ �norm� 0�1 (SNR�16 dB). Each input was uniformly
distributed, white, zero-mean, random sequences with unit
variance.

Second, a single tank test-bed was used to assess the feasibil-
ity of this approach for control applications. The test-bed is
a single tank system, described in detail in various literature
(see e.g., [3]). We modeled this one-tank process as a first-
order LTI system. The form of the identified model was the
same as given on the right side of Eqn. 4. Two data sets were
collected for this study. The measured data was anti-alias fil-
tered with an fourth-order 10 Hz Bessel filter and sampled at
100 Hz by a 16-bit A/D converter. After recording, the ex-
perimental data was decimated by a factor of 3, resulting in
a final sampling rate of 33 Hz.

For both the simulated and experimental case, an initial data
set was generated to estimate a nominal model. The Sys-
tem Identification toolbox in Matlab was used to identify a
nominal model. Next, the system was perturbed with a fresh
input set to generate data for validation. The LMI toolbox
in Matlab was used to solve the linear programming prob-
lem. The uncertainty filter,W , was computed by assuming
a 33% uncertainty for each parameter. Specifically, we ran-
domly selected 100 parameter sets for the perturbed model,
Gp, computed the Bode plot for each then selected the sys-
tem which gave the best coverage of the uncertainty region
as our uncertainty filter. The selected uncertainty filter was
multiplied by a small gain factor so the filter could contain
the entire uncertainty region. For identificationNe � 5�000
points were used and to determine feasibility of the model
invalidation problemNv � 200 were used.

4 Results

4.1 Simulated Data
We first studied the simulated case since if this approach fails
for a simulated system it is likely to fail with experimental
data. Fig. 1 (left panel) shows the results for this simulated
study. The plot shows thatγ was close to zero, for all real-
izations. We expectedγ to be less than 1 in this case since
we selected our uncertainty filter,W , to fully cover the un-
certainty region.

4.2 Experimental Data
Next, we studied how this technique performs with experi-
mental data to access the feasibility of using this approach in
an industrial setting. Figure 1 (right panel) shows the results
of this study. The figure shows, with experimental data, this
model invalidation procedure provided aγ� 1.

5 Conclusion

Our results demonstrate that for a simulated system with un-
modeled dynamics this time-domain approach to model in-
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Figure 1: Feasibility of model invalidation. Nominal model:
first-order. (Left) True system: simulated second-order
system (Nv � 200). (Right) Experimental data set
(Nv � 500).

validation does provide a good and stable estimate of the
system uncertainty. The smallγ’s in Fig. 1 are due to our
uncertainty filter’s ability to explain the unmodeled dynam-
ics. It would be worth considering the case where there are
unmodeled dynamics and an uncertainty filter that does not
cover the uncertainty well to assess the performance of this
algorithm.

For experimental data this approach provided a reliableγ.
Although our results indicate that this approach for model
validation is practical for designing control strategies for
real systems, we believe that the results of Poolaet al. [4]
have not been thoroughly tested with experimental data. We
have not assessed the performance of this time-domain ap-
proach forH∞ control. This is being examined for time-
domain data and the results will be give at a future date.
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