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Abstract

Approaches to uncertainty modeling for robust control of
large flexible space structures (LFSS) such as additive or
multiplicative perturbations in #  do not work very well
because of the special properties of LFSS dynamics. In
this paper, we propose the use of a left coprime factoriz-
ation (LCF) of LFSS dynamics in modal coordinates for
robust ‘control design: The plant uncertainty is then de-
scribed as stable perturbations of the coprime factors ac-
counting for modal parameter uncertainty and unmodeled
dynamics. Two multivariable H, designs based on LCFs

of 46" order colocated and noncolocated models of an
LFSS experimental testbed are presented together with
simulation and experimental results to illustrate the tech-
nique. :

1. Introduction

The dynamics of large flexible space. structures (LFSS)
are characterized by their high order and their signific-
ant number of closely-spaced, lightly-damped, clustered
low-frequency modes. Mathematical linear dynamic mod-
els of LF'SS are usually obtained using finite-element (FE)
methods, but these models are known to be accurate only
for the first few modes of the structure. Thus, uncertainty
modeling in LFSS is critical if one is to achieve an accept-
able level of robustness with a practical controller. Some
works [1], [15] use norm-bounded additive or multiplic-
ative perturbations of a nominal model in the frequency
domain to account for uncertainty in the modal frequen-
¢ies, damping ratios, and mode shape matrix of the model.
Unmodeled modes of the structure and uncertain actuator
dynamics can also be represented in this way [11]. Such
approaches to uncertainty modeling in LFSS do not handle
modal parameter uncertainty very well: Slight variations
in either the modal frequencies or damping ratios usually
cause the associated dynamic perturbations to be large in
the oo-norm sense. Covering unmodeled modes with such
perturbations suffers from the same problem, leading to
low-performance control system designs. In this paper,
it is suggested to transform real parameter uncertainty
in the modes into unstructured uncertainty without get-
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ting too conservative in the sense that the uncertainty set
in H{ has to be kept relatively small. A more direct ap-
proach would be to model the uncertainty as real bounded
perturbations, which leads to the mixed real/complex p
problem. - This problem has been studied recently [9] and
design methods based on minimizing an upper bound on
the mixed g function, such as the so-called Popov con-
troller synthesis, have been developed. Application ‘to a
flexible structure has been reported in [10]. These meth-
ods are attractive but they quickly become numerically
difficult (actually, they are NP-hard) as the plant’s or-
der and the number of independent perturbations increase.
Some authors have argued (e.g [16]) that coprime factor-
izations (CF) in Hoo of nearly unstable plants, such as
LFSS, is a sound way to model these systems.  This is
the approach taken here, as introduced in [3]. The sim-
ilar design techniques of loopshaping [12] and weighted-
gap optimization [5] applied to LFSS both use a normal-
ized CF of LFSS dynamics. The good results obtained
in [12] and [5] with these techniques show the potential
of modeling LF'SS dynamics using coprime factorizations,
but they don’t address the problem of converting known
uncertainty bounds on the modal parameters into norm
bounds on factor perturbations. The difficulty comes from
the fact that these methods rely on-normalized coprime
factorizations, which destroy the decoupled structure of
the nominal modal state-space models.

Section 2 presents a very simple method to obtain a left
coprime factorization (LCF) of LFSS dynamics in modal
coordinates that preserves the decoupled structure. Un-

-certainty modeling is discussed in Section' 3. In Section

4, two multivariable Hs, designs based on LCFs of two

46%%-order colocated and noncolocated ‘models of an LFSS
experimental testbed called Daisy are presented together
with some simulation and experimental results.

Notation. The norm. of a complex matrix is taken to
be its maximum singular value: ||H|| = &(H). For z
in R?, [|z]lcc = max;=1, n|zi|. We denote the open
and closed right-half complex planes by C; and C; re-
spectively. The space H o, 'is the class of functions ana-
Iytic in €. and bounded on the imaginary axis with norm
defined as ||Qllec = sup,cg [|Q(Iw)[l. RHoo is the
space of real-rational functions in # .. It should be clear
whether we are considering scalar or matrix-valued func-
tions, but sometimes we will write, say, H7*". - For a
normed space X, BX ‘denotes its open unit ball: A func-
tion in Hoo (RH o) is a unit if its inverse also belongs to
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Hoo (RH.oo). Signals are represented with lower-case let-
ters and their Laplace transforms are just the same letters
with hats. Scalar constants and functions are represen-
ted respectively by regular and boldface lower-case let-
ters, while matrix constants and matrix-valued functions
iu‘e assigned respectively regular and boldface upper-case
etters.

2. A Left Coprime Factorization of LFSS
Dynamics

We start with LFSS dynamics in modal coordinates, re-
duced to a reasonable order by discarding the less signi-
ficant flexible modes according to some measure of their
input-output influence [14]. The first three are the rigid-
body modes. The modal frequencies of the n — 3 remain-
ing retained flexible modes, {w;}2 4, are given by the FE
model; uncertainties will be introduced later. Damping
is added to the nominal model since flexibilities in any
LFSS are dissipative in nature. So if {{;}F_4 are posit-
ive upper bounds and {Q‘ }_,4 nonnegative lower bounds
on the otherwise unknown damping ratios, we may take
{¢i := (¢;+¢i)/2}7=4 as the nominal ones. Thus, adding

a diagonal damping matrix D, we get the nominal dy-
namic equations in modal coordinates 7:

i+ Dnp+An =
y =

Blu
Cin,

(1
(2)
where u(t) € R™ is a vector of actuator forces and torques

applied to the structure, y(t) € IR?P is the vector of meas-
ured outputs (attitude angles, displacements, rotations),

D =diag{0,0,0,2¢sws,...,2(nwn}, A=diag{0,0,0,w3, cen w2}y

Bl € ]Rnxm’ Cl € Rpxn'
Taking Laplace transforms with zero .i.c. yields

A(s) = [s""I+.‘;D-!-A]'1 B i(s), 9(s) = Chii(s) (3)

The assumptions here are as follows: (A1) The sensors
have no dynamics. (A2) No pole-zero cancellation at
s = 0 occurs when the product C} [82I +sD+A]"1 By
is formed. (A3) The uncertainty in the output matrix Cy
can be lumped in with the input uncertainty. The mo-
tivation behind assumptions (A1) and (A3) is that space
sensors are usually accurate-and fast while space actuat-
ors, which include torque wheels and gas jet thrusters, may
add quite a bit of uncertainty in the torque and force in-
puts. Assumption (A2) is standard and just says that the
unstable rigid-body modes must be controllable and ob-
servable with the set of actuators and sensors used. Con-
sider the matrix [s2] + sD + A] in (3). It is diagonal, so
its inverse is simply

4 101 1 1
2400 wastw?
dlag{';f’ 31 32 32l wstw? ’

(4)

[*I+sD+A"Y =
8242{pwnstwy

Introduce a polynomial s2 +as+ b,L Hurwitz with real
zeros and form the matrices M (s), IN(s) as follows:

M(s) = mi—’_—ﬂ;diag {32,32,52,32 o+ 2qwas + w2,

...,82+2(nUIn3+W?;} (5)
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1
B
s24+as+b 1 ©6)

The complex argument s is dropped hereafter to ease the
notation. Note that M and IV belong to RH s and the
transfer function matrix from 4 to 7} is G = M N ,
ie., M and N form a left factorization of G in RHeo-
It is easy to show that M and N are left-coprime.

N(s):=

3. Uncertainty Modeling for LFSS

Uncertainty in FE models is usually characterized by un-
certainty in the modal parameters {C,'}?=4 and {w,-}?=4,
in the mode gains, and in the mode shape matrix E. The
uncertainty modeling process proposed here uses the a pri-
ori knowledge of the bounds for {(i}fy, {wi}i=s. This
information is used to derive a bound on the norm of the
coprime factor perturbations at each frequency, which will
be needed in the design process for robustness issues. Of
course, some uncertainty is also present in the mode shape
matrix F of the structure and will be accounted for as un-
certainty in the entries of By. This section can be outlined
as follows. First we start with the parametric uncertainty

model (8); this induces stable perturbations in M and

N. These induced perturbations and their correspond-
ing perturbed factors are given the subscript “rp” for real
parameter. On the other hand, some of the results stated
apply to more general perturbations in RH o, but then
the subscript is dropped. Two scalings are performed on
M, and Nyp so that the perturbations are better bal-
anced. Finally, a third scaling normalizes the combined
factor perturbations. It is desired to lump the uncertainty
in the mode frequencies, damping ratios, and mode gains
into unstructured uncertainty in-the coprime factors such
that the perturbed LCF of G can be written as

G, = (M + AM)"Y(N + AN), (7)
with AM, AN € RH. Perturbations in the modal

parameters and the entries of B; are assumed bounded
by nonnegative numbers as follows: :

il <L, BGI<E, [8bl <UF, i,5=1,...,n.
8
The following matrices will be useful later on: ®)

8b1y in 1Lm

66111;
ABj = : , Lg:=

Sbm1 Sbam i Ipm

Perturbations of the coprime factors resulting from per-
turbations of the real parameters only are easily com-

puted: The perturbed factor M,y is defined as

M,, := M + AM,,, 9

where
[2¢48wq +26¢a(wa +6wa )]s+ 2wsdwq +8w2

AM .p:=diag {0,0,0, 2 T asd b

. [2¢ndwn + 28Cn(wn + Swn)]s + 2wndwn + Swi
e s2+as+b ’

and the perturbed factor N rp is defined as

IV,,, = N+ AN,,, (10)



Figure 1: Feedback control of a perturbed LCF model.

where AN rp 1= ;%’1_'_—17. Now let us consider closed-

loop stability of the system in Figure -1, where a con-
troller K is connected as a feedback around a perturbed
LCF, with U and V arbitrary transfer matrices such that

no pole-zero cancellation occurs in @—+ when the product
V(M +AM)~Y(N +AN)U is formed. Define the un-
certainty matrix A := [AN —AM]. Clearly, if AM,,
and AN, are substituted in this definition, the resulting
A,y belongs to RH . Define the uncertainty set

D ={A € RN

T Alle <1}, (11)

where 7 is-a unit in Ho,. The small-gain theorem yields
the following slightly modified result of [16] (see also [12]).

Theorem 1 The closed—loop system of Figure 1 with
controller K is internally stable for every A € D, iff
(a) K internally stabilizes VGU, and

® | [ UKV(I-GUKV) ‘M~

L } <1.
(I-GUKV) M uoo

Given the parametric uncertainty in (8), a bound of the
type |(jw)| that would tightly cover || A, (jw)|| must be
found. But before this weighting function is constructed,
different scalings must be performed on the factors and
their perturbations to avoid any undue conservativeness

and to “balance” the perturbations, i.e., to minimize the
difference between the oo-norms of AN, and AM,,.

The first scaling aims at making the components of the
rows and columns of B; have the same order of mag-

nitude. Let B; denote the co-morm of the 7% column
of By and form Jp := diag{B1,...,0n} Now let o;
denote the co-norm of the i row of B; Jg ! and form
Ji = diag{os,...,an}. Let v := ||J; ' LpJ5 || and
define the scaled matrices By, = 7_1J1—131J2_1 and
AB,. = 'y'lJl"lABlJz_l. 1t is easy to show that for
all AB; satisfying the inequalities in (8), ||AB;.|| < 1.

Finally, we can define the scaled factor and its perturba-
tion:

No:=by Y U7 NIt = (s° 4 as + b) " 1bB,,,

AN,y = by JTTAN,, I = (s%+as+b)~1bAB,..

The second scaling is performed on M to make sure that
the norm of any perturbation of it induced by variations in
the modal parameters is less than or equal to one, but close

to one at low frequencies. Let ¢; 1= QQIZ_, + 212 (w;i + lzu)
and d; := 2w;l}, + 12 for i = 4,...,n. These constants
are the coefficients of the numerator of the (i,1) entry
of AM,, when all modal perturbations are replaced by
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their upper bounds. Defining ¢,,,45 := mMax;~q .. n € and

maz = MaXi=4, ,d; we can now define the second
scaled factor and its perturbation:: )
~ b o~ b
M,y = M, AM,py:= =AM,
dma:f; dma.’b :

These two scalings are illustrated in [4] by a sequence
of block diagrams showing the transformations performed
on the coprime factors'and their. perturbations. Noté that

NNy and M are still coprime. 1t is our experience that
these types of scalings help a lot in reducing the H ., norm
of the generalized plant’s weighted transfer matrix in an
actual design. The last scaling performed on the perturb-

ation Appo = [AN,-pg *‘AMrpO] normalizes it with
the weighting function"r(é) to get [|Arpolloo. < 1. This is

illustrated in Figure 2 where T'; models ‘actuator dynam-
ics.  We are now ready to-design a weighting function

vJy and djL, are “absorbed” by the controller.

Figure 2: Perturbed factorization after all three scalings.

R = 7! for the scaled perturbation A,,9. In so doing,
the freedom provided by coefficients of the common de-
nominator s2 + as + b will be used to our advantage to

keep the order of 7 as low as possible without paying the
price of added conservativeness. Here is the result Eﬁ

Proposition 1 Fork >0, define-a and b via s*> +as +
€18+ \/5 + €0

(sfk+1) '
where e¢o and €; are small positive numbers. Then
P Arpolleo < 1.

This weighting function is of first order, which is a benefit
considering that it will be duplicated m -+ n.times in the
generalized plant of Figure 3. By construction, for small
€0, €1, |*(jw)|is a relatively tight bound on || A0 (jw)||;
especially at low and high frequencies. With the unit 7
given by Proposition 1, the factor perturbation Arpo be-

b o= (s+ %:f:‘) (s + k) and let r(s) =.

longs to the uncertainty set D, and the normalized A,-po :
belongs to BRHLS (m+7) " Now introduce a normalized
scaled perturbation Ag € BR?{Z’OX(m"'"). Then letting
Ay = ’I'A(), one obtains that Agis an arbitrary element

in D». In this way * can be included in the generalized

plant of Figure 3. This figure shows the scaled closed-loop
system with all the weights for designing a controller K
providing robust stability and nominal performance.

4. Robust ., Design

According to Theorem 1, our robust stability objective will
be to minimize Hw - lelob to a value -no-more than.1
over all stabilizing controllers. Now consider the problems
of attitude regulation and vibration attenuation. For these
problems, it makes sense to ask for good torque/force dis-
turbance rejection at low frequencies as a first require-
ment for nominal performance. For example, this may be



required on a flexible space station on which there may
be large robots or humans producing significant torque
disturbances. As a second requirement for nominal per-
formance, we will ask for good tracking of reference angle
trajectories to allow accurate slewing maneuvers of the
rigid part of the structure. These requirements can be
translated into desired shapes for the norms of the sens-
itivity functions Syp := 7 ++ € and Sap = d - yn,
where 7 is the vector of input references, ey, is the vector
of attitude angle errors for the rigid part of the structure
(the h subscript stands for hub, the rigid part of Daisy),
d is the vector of external torque/force disturbances, and
yn = [Ohz Ony GhZ]T is the vector of attitude angles of

the rigid part. Note that if we define S, = r = e,
where € is the vector of all position/angle errors, and

Sy = d = y, then Spp = [Isxs 03X(p—3)] S, and

Sap = [I3x3 ng(p_;g)] S4. These frequency-domain

specifications are well-suited for the H oo design method {8]
or a pi-synthesis [2]. Here we discuss the M oo approach.

Bl

e

foed -3

Figure 3: Generalized plant with scaled perturbation and
controller for Hoo design.

The block diagram of Figure 3 shows the interconnec-
tions between the scaled factors and their perturbations,
actuator dynamics, scaling and output matrices, control-
ler, and weighting functions that form the controlled per-
turbed generalized plant used in the Ho, design. The
weighting function W, will allow us to shape the sensit-
ivity functions as desired. The input signal u,c is just a
scaled version of the physical signal u: 4, 1= I}:Jzu.
A few algebraic ‘computations done on the system of
Figure 3 show that S, == (I - C;Ji M5 NoT.K)~ and
Sg:= r};s,-C;J;M;‘Non. For ¢ > 0, let Wq =
qw [Iaxa 03x(p_3)], and let W, = Wq|q=1. We con-
sider the following problem of robust stability and nom-
inal performance. It is desired to reduce the co-norm of
the transfer matrix W 1S4 to a value less than or equal
to 1 to achieve [|San(jw)l] < |w=1(jw)|,Vw for good
force/torque disturbance rejection at low frequencies. As
a second requirement, we would like to keep the norm of
S.5(jw) smaller than jw~!(jw)| to achieve good low-
frequency input tracking. These specifications lead to
the following robust stability and nominal performance
problem:

Problem RSNP  Design a finite-dimensional,
proper, linear time-invariant controller K such that

with ¢ = 1 and Ao = 0, the closed-loop system has
the following properties:
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[lw > z1]joo < 1 (robust stability),
lIr = z2llo < 1,
“d > Z‘Z“oo <L

(i)
(iz)
(iii)

Note that the reference and torque/force disturbance input
channels labeled respectively r and d and represented by
dashed lines in Figure 3 are not included in the design
process. This is to avoid introducing too many cross terms
in the closed-loop transfer matrix whose co-norm is to be
minimized. Thus, a compromise standard Ho problem
is set up to solve Problem RSNP. The basic goal of the
5]
w <1
zZ2 o -

for Ag = 0. The Ho, design method minimizes the 0o-

proposed Hoo design is to achieve

Z LW

y| P
=

Figure 4: Generalized plant for Heo design.

Usc

porm of the closed-loop map w > 2 over all stabilizing
[ o ] The design
block diagram of Figure 4 represents the same system as
the one in Figure 3 but without the perturbation Ap and

controllers in Figure 4, where z =

the ex;))genous signals r and d.- The generalized design
plant P is given by
‘ Py P2
P:= 12

[ Py P (12)

where
0 rTs
Pyy:= rM;! ] y Piai= rM; NoTs
W,C1 1 My" W,C1J1 My 'NoTa

|

Problem COMP Design a finite-dimensional, proper,
linear time-invariant controller K such that for Ao = 0,
the nominal closed loop of Figure 4 achieves ||w -+ z|[eo <
1.

P21==01J11\~46-1, P22==01J1Mo_lﬁ’oTa-

Justification that a solution to Problem COMP also
solves Problem RSNP is given by Proposition 2 that,
more specifically, states that we can shape the norms

of Sgp and Sy indirectly by minimizing ||w — 22]|oo
(see [4] for a proof). Referring to Figure 3 again, let
S = (I—M(,_lﬁnglKClJl)‘—l. In the sequel, fix
k = ¢maz/dmaz in the second-order common denomin-
ator of the scaled factors.

Proposition 2 Assume C) is right invertible and
let C! be a right inverse of Ci. Let ¢ =
max { || MoJ Cllloo, dmbsll ;7 Balf}.  If the controller
K is internally stabilizing and achieves

i T KC1J,5: M;"
“WH [ z; ] = rS1 My <1,
o WS, Ci i My
(13)



then the closed-loop system of Figure 3 is robustly stable
to all perturbations A, € BRHZOX(m+"), and for every
w € R we have :

| San ()l
Sra ()l

(14)
(15)

< i (Gw)l,
< lwTi(Gw)l

The choice of ¢ in Proposition 2 may be used for a first
design to get insight into the tradeoff between robustness
and performance, but smaller values of ¢ may be tried to
reach a satisfactory design achieving (14) and (15). In
our experiments on Daisy, we found that weighting all the
outputs was asking too much given the uncertainty in the
model and the actuator saturation levels. Hence only the
hub angles were weighted with W, as above. In any case,
the modal coordinates are weighted by 7 (see Figure 3),
which in our experiments on Daisy resulted in sufficient
vibration attenuation. Note that the controller K, to be

implemented on the real system is a scaled version of K,
e, K, = dmae 71K

4.1. H Designs for Daisy

Daisy is an experimental testbed built at the University of
Toronto Institute for Aerospace Studies (UTIAS) whose
dynamics are meant to approximate those of real LFSS;
see Figure 5 [6]. It consists of a rigid hub (the “stem”)
mounted on a spherical joint and on top of which are ten
ribs (the “petals”) attached through passive two-degree-of-
freedom rotary joints and low-stiffness springs. Each rib is
coupled to its two neighbors via low-stiffness springs. The
hub represents the rigid part of the LFSS, while the ribs
model - the flexibilities in the LFSS. Each rib is equipped
with four unidirectional air jet thrusters that are essen-
tially on-off devices, each capable of delivering a torque of
0.8 Nm at the rib joint. Pulse-width modulation (PWM)
of the thrust is used to apply desired torques on the ribs.
The four thrusters are aligned by pairs to implement two
orthogonal bidirectional actuators. So from now on, when
we use the word thruster alone, we will mean bidirectional
thruster. Mounted at the tip of each rib is an infra-red
emitting diode. Two hub-mounted infra-red CCD cam-
eras measure the positions of these diodes via ten lenses,
and the rib angles are computed from these measurements.
The hub actuators consist of three torque wheels driven by
DC motors whose axes are orthogonal. Each can deliver
up to 58 Nm but is limited to 38.8 Nm. The hub orienta-
tion and angular velocity can be measured with position
and velocity encoders. For this research, only DEOPS and
the hub position encoders were used as sensors. The dy-

alsctro--optical positioning system Qop') rib—tip accelerometers (20)

._ KA
(3 5T
- [
'( <

-,

:

reaction wheels (3)

Figure 5: Daisy LFSS experimental testbed.

namic model available for Daisy is of 465 order, including
20 flexible modes with nominal frequencies ranging from
approximately 0.56 rad/s to 0.71 rad/s and damping ratios
from 0.015 to 0.06. Open-loop experiments showed that
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the uncertainty in the modal frequencies is roughly 10°%;,
while damping ratios are accurate only to within 50 %.
Some of the modes are multiple. Two of the rigid-body
modes are pendulous, so they can be considered as flex-
ible modes; they both have frequency 0.294.03 rad/s and
their damping ratios are 0.1140.05 and 0.093:0.05. The
model has the form of (1). Note that Daisy is not “easy”
to control: Colocated #3 controllers designed: without ro-
bustness considerations and implemented on Daisy failed
to stabilize it. The method described in Section 4 is-illus-
trated by designing a robust controller for colocated and
noncolocated configurations of Daisy using the H o, design
method.

4.1.1 Colocated Case : By colocation we
mean that all rotations and displacements produced by
the actuators at their locations are measured and that
each sensor has a corresponding colocated actuator. Thus
23 actuator/sensor pairs are used, namely the 20 bid-
irectional rib thrusters with theDEQOPS system measur-
ing the 20 rib angles, plus the three hub reaction wheels .
with the three corresponding angle encoders.  In terms
of system equations (1) and (2), the inputs are u =
[The Thy Thz Tr1 T2 - - Trao]T, where the first three are
the hub torques around the #, y and z axes, and the last
twenty inputs are the rib torques given by

-
(16)

where out-of-cone and ‘in-cone refer to orthogonal direc-
tions outside or inside the cone formed by the ten ribs.
All torque inputs are expressed in Nm. The input mat-
rix By € R?3%23 i5 assumed to have up to 8% uncer-
tainty in its entries. - Note that“the torque wheels have
some dynamics, i.e., for each wheel, the transfer func-
tion between the desired and produced torques is first-
order and strictly proper. On the other hand, the PWM
thrusters, which deliver average torques close to the de-
sired ones, are modeled as pure gains. Overall, the trans-
fer matrix T, in Figure 3 is taken to be

rib (# 4+ 1)/2 out-of-cone torque, % odd,

rib i/2 in-cone torque, t even,

Ta — diag{0'018+1 0.015+i 0.01s41 (17)

0.36s4+110.36s4+170.36s+1" Lo 1}’

where the terms 0.01s are added in the numerators to reg-
ularize the generalized plant for the H o, problem, and the
0.36 time constants were measured experimentally. Note
that T'; commutes with Jp. The outputs are the angles
Y = [Orebhybns0:10,2 - - - 0,90]7 , which correspond to the
input torques described above. The output matrix is just
the mode shape matrix C) =-F € R?»*23_which is in-
vertible. All angles are expressed in radians. Finally, A =
diag{w?,...,w3s} and D = diag{2¢1ws, - . . , 2a3was}.
A plot of the 23 singular values of C; G{jw) is shown in
Figure 6. An analysis of the Hankel singular values of a
normalized coprime factorization of the plant model C1 G
[13] showed that they all lie between 0.2 and 0.9, which
indicates that the model should not be reduced.”- Con-
sequently, our design model includes all the modes. It is
desired to control Daisy’s model so that it remains stable
for all bounded perturbations of the modal parameters and
all perturbations of the entries of By within ‘8% of - their
nominal values. We also-want good torque/force disturb-
ance rejection and good tracking in the sense of (14) and
(15). The generalized plant for the robust H o, design is
built according to Figure 4, and the different constants
and weighting functions are

Cmaz

dmaz = 107, Cmasz = .046, k = = .43, v = .79, g = 10%,

maxT

100

w(s) = 2/(0.01)% + 2 X 0.75/0.01 + 1’

(18)



Singuler Vool € G (ja)

o 10'
Froquency (radianeieec)

Figure 6: Singular values of C1G(jw).

r(s) 0.001s 4 1.415 (19)
5 = —— .
2.33s+1

Note that ¢ = 1.42 x 10* when computed using the for-
mula in Proposition 2, but this value turned out to be too
large to get the co-norm of w > 2 down to less than 1.
However ¢ reduced to 1000 led to a good tradeoff between
robustness and performance. The H oo design was carried
out in MATLABTM using the u-ToolsTM [2] command
hinfsyn, which minimizes the co-norm of the closed-loop
map W ++ z over all stabilizing controllers in Figure 4,
and computes a suboptimal controller achieving an 0O-
norm within some desired accuracy of the optimal. The
generalized design plant P is given by (12). If a realiza-
tion of it is obtained using a computer, this realization will
in general be nonminimal because pole-zero cancellations
might not be carried out. Also note that P is unstable,
so one cannot use the balanced truncation method to get
rid of the unobservable and uncontrollable modes. There-
fore we used the decentralized fixed-mode method [7] to
obtain a minimal realization of P, reducing it from 147
to 78 state variables, which equals its McMillan degree.
This method has the advantage of being computationally
simple and hence more reliable for such large systems. A
stable suboptimal controller achieving ||w - 2||c = 0.94
was obtained. Its order was the same as the order of the
minimal generalized plant, i.e., 78, but a balanced trunca-
tion reduced it to 55 state variables without affecting the
closed-loop oco-norm. With this reduced controller K1,
robust stability was achieved as ||lw — 21 loo = 0.94,
while Figure 7 shows that the required performance has
been attained, i.e., ||Syn(jw)|| and ||San(jw)l| are less
than |w~!(jw)|, as desired. The least-damped closed-

loop mode has a damping ratio of 0.38. The 55th_order

Bonskivity noms.

Figure 7: Norms of Sgp(jw) and Syp(jw) for K;.

controller K1 was rescaled to K1 = i%y“z-JQ_lKl, a
controller using the actual rib and hub _angles to compute
actual rib and hub control torques. Then, since the im-
plementation of the controller must be digital, K1 was
discretized at a sampling rate of 10 Hz using the bilinear
transformation; call the resulting controller Kpia. We
used the standardized hub torque disturbance profile in
Figure 8 for all our test experiments and simulations. It
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can be applied by any of the three torque wheels indi-
vidually or in any combination. In all the experiments
and simulations, the controller is switched on after the
hub angle experiencing the largest deviation changes sign.
Thus the disturbance has roughly the effect of a torque im-
pulse applied to the hub because the controller starts when
the hub angles are small while the angular velocities are
large. However, the rib angles may not be small at switch-
on time. For all the plots, £ = 0 corresponds to the instant
at which the controller is turned on. Before we proceed to

Hub torque (Nm)
Ag

—1.544

Figure 8: Standard hub torque disturbance D(Aq4,T,azes)

present the closed-loop simulation and experimental res-
ults, an open-loop response of Daisy to D(13.5Nm, 2s, z)
is plotted in Figure 9 along with a simulated continuous-
time response of the nominal model C; G Discrepancies
between some of the actual and nominal modal frequencies
and damping ratios can be observed from these plots, illus-
trating the uncertainty in the model. All simulations are

Simulated hub response Simulated rib 1 response
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0.08 0.05},
L on oA
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Figure 9: Simulated and experimental open-loop responses
of Daisy to D(13.5Nm, 2s, z).

linear and discrete-time with the plant model (including
actuator dynamics) discretized at 10 Hz using c¢2d. The
first closed-loop experiment with K p14 is the response to
D(13.5Nm, 2s, y). The simulated and actual hub angles
are shown in Figure 10. Note that absolutely no exper-
imental tuning was necessary to get all the responses in
this research, unlike some PD, LQR and LQG controllers
that were previously tested on Daisy. The settling times
of the experimental and simulated Opy are approximately
the same but the transient response is much larger exper-
imentally. This is due in part to hub torque saturation.
The simulated and experimental computed control torques
were within their limits except for the first second where
saturation occurred. Recall that the saturation levels are
38.8 Nm and 0.8 Nm for the hub and rib torques respect-
ively, but the simulations do not have these limits. Fig-
ure 11 shows the simulated and actual rib angles. It can be
observed from this figure that the experimental rib angles
are reasonably close to the simulated ones, even though the
experimental computed rib torques were as large as three
times the saturation levels for the first few seconds. Finally
notice how the experimental rib responses do not converge
to zero as rapidly as in the simulation. This is due to a sig-
nificant deadband in the jet thrusters input-output charac-



teristics. This deadband was not quantified but will be for
future experiments. Results for D(13.5Nm, 2s, z) were
less consistent than in the previous case, but still satis-
factory. The experimental response to D(13.5Nm, 2s, z)
was comparable to the simulated one [4].

Simulatad closed-loop hub angle

10 hub torqua di

] 10 20 a0 40 50 80
Time (sec)

Experimental closed—laop hub angle responsaes 1o hub torque disturbance

40 &0

a0
Time (sec)

Figure 10: Simulated and experimental closed-loop hub
angle responses with K14, D(13.5Nm, 2s, y).

d-loop rib angle to hub torque d

g (X}
E: o
k-3
2 o1 E
S —
- 10 20 30 40 50 &0
Tima (sec)
d—loop rib angle to hub torque di
0.2
= 0.4 4
s
£ o
..
02 10 20 30 40 50 60
Time (sec)

Figure 11: Simulated and experimental closed-loop rib angle
responses with K14, D(13.5Nm, 2s,y).

4.1.2 Noncolocated Case: Daisy’s actuators
and sensors can be combined in many different ways, al-
lowing the study of noncolocated control of LFSS. We
chose to use all 23 angle measurements (DEOPS) but only
17 thrusters and the three hub reaction wheels. The three
rib actuators not employed are the in-cone jet thrusters
of ribs 2, 5 and 7. Past experiments with noncolocated
controller designs based on the available model always
destabilized the closed loop, so it was deemed appropri-
ate to improve the model using open-loop data in order to
reduce the uncertainty in the modal parameters. This ex-
ercise resulted in a new set of modal frequencies with asso-
ciated estimates of uncertainties; From 0.59 to 0.79 rad/s,
all with 5 % uncertainty. The B; matrix of equation (1)
for this model is a slightly modified version of the one for
the previous model with its 7t*, 13** and 17** columns
removed. It is assumed to have up to 5% uncertainty in its
entries. The output matrix C' is the same as in the previ-
ous model. All the modes are retained in the noncolocated
nominal design model as the Hankel singular values of a
normalized coprime factorization of the new C;G all lie
between 0.17 and 0.92. There are no transmission zeros
in €4 in the nominal plant model. It is desired to con-
trol the noncolocated model so that it remains stable for
all bounded perturbations of the modal parameters and
all perturbations of the entries of B; within 5% of their
nominal values. We also want good torque/force disturb-
ance rejection in the sense of (14) but a few iterations of
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the design suggested that we have to relax the tracking
requirement {15) in order to achieve robust stability and
(14). Hence we will focus only on the disturbance rejec-
tion specification. Also, it was found that the uncertainties
in the model had to be assumed . somewhat smaller than
given to guarantee closed-loop internal stability, namely
4% in the entries of B, 3% in the modal frequencies and
20% in the damping ratios. Note that this does not mean
that instability will automatically result if some of the ac-
tual modal parameters lie outside those ranges. Indeed
inequality (13) is only sufficient; and furthermore there is
some conservativeness in the choice of r given by Propos-
ition 1. The generalized plant for the robust H, design
is built according to Figure 4, and the different constants
and weighting functions are

dmas = 038, Cmaz = 018, k= ST — 47, ~ = .37, q = 400,
mMaxr
50 , '
w = 20
() $2/(0.01)2 + 2 x 0.75/0.01 +1° (20)
0.001s + 1.415
r(s) = 2000 + 1415 (21)

2.1s+1

Note that ¢ = 4 x 10* when computed using the formula
in Proposition 2, but this value was muich too large to get
the co-norm of w +> z down to less than 1. So ¢ was
reduced to 400, a satisfactory value obtained after a few
iterations of the design procedure. The H, design was
again carried out in MATLABTM, We used the decent-
ralized fixed-mode method [7] to obtain a minimal realiz-
ation of P, reducing it from 138 to 75 state variables. A
stable suboptimal controller achieving [jw > z||oo = 0.62

‘was obtained.  Its order was the same as.the order of the

minimal realization of the generalized plant, i.e., 75, but a

balanced truncation reduced it to the 49** order control-
ler K5 without affecting the closed-loop oc-norm. With
this reduced controller K5, robust stability was achieved

as ||w — zilleo = 0.62 while Figure 12 shows. that re-
quired performance has been attained, i.e., || Sqp(jw)|| is
less than |w™!(jw)| as desired, although ||S,;(jw)]| is
not as mice as in the previous colocated design: The least-
damped closed-loop mode has a damping ratio of 0.18.

The 49*%-order controller K 2 was rescaled to Kpy =

Senskivity rorms

Figure 12: Norms of San(jw) and Sh(jw) with K.

iﬂ};‘”ﬁ]{ !K5. Then K p2 was discretized at a sampling

rate of 10 Hz using the bilinear transformation; call the
resulting controller K ,34. The first closed-loop exper-

iment with Kpsq is the response to D(13.5Nm, 2s, z).
The simulated and actual hub angles are shown in Fig-
ure 13 while Figure 14 shows the simulated and actual rib
angles. The experimental response of 0, has a transient
about twice as large as in the simulation but the settling
times are comparable. However, the experimental rib re-
sponses look quite different from the simulated ones. Most
noticeable are oscillations of the unactuated ribs in the in-
cone direction that die out very slowly. The experimental
transients are also larger. The experimental rib torques



saturated for the first two seconds but this might not ex-
plain the discrepancy between the experimental and sim-
ulated torques. It is more likely that the plant dynamics
are not well modeled by the nominal coprime factorization.
Moreover, the nonlinearities seem to play a more signific-
ant role in this noncolocated configuration because some
of the ribs do not have local feedback to reduce their ef-
fects. The experimental response with K24 and a torque

hub angle to hub torque di

30 40 50 80
Time (sec)

-t hub angle

to hub torque disturbance

40 80

30
Tima (sec)

Figure 13: Simulated and experimental closed-
loop hub angle responses with Kp2a,
D(13.5Nm, 2s, z).
02 | rib angle to hub torqua disturbance
£ % -

. —
10 20 30 40 50 80
A\

o hub torque disturbance

0 10 20

a0 40 50 80
Time (sec)

Simulated and experimental closed-
Wlth K p2d,

Figure 14:
loop rib angle responses
D(13.5Nm, 2s, z).

disturbance D(13.5Nm, 2s, y) was marginally stable: One
of the ribs unactuated along the in-cone direction entered
a small limit cycle involving only its out-of-cone thruster
and in-cone motion. The simulated response was compar-
able to the one shown in Figures 13 and 14. It is believed
that thruster deadband, coupling spring nonlinearities and
thruster misalignment caused the occurrence of the limit
cycle. A closed-loop experiment with a z-axis disturb-
ance D(6.8Nm, 2s, z) showed that Kpad unequivocally
destabilized Daisy even though the simulated nominal re-
sponse was stable. Those input-dependent stability res-
ults hint at what could be significant nonlinear effects for
this noncolocated configuration. The linear simulations
showed very good nominal performance while the design
itself indicated robustness to reasonably large deviations
in the modal parameters.

5. Conclusion

A new approach introduced in [3] to the robust control of
LFSS using a coprime factor description of the plant’s dy-
namics was presented. To illustrate the technique, two
Hoo controllers were designed for colocated and non-
colocated models of Daisy. These models have signific-
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ant parameter uncertainty, yet the controllers designed us-
ing the coprime factorization technique were quite robust
and achieved good performance levels in terms of rejec-
tion of hub torque disturbances. Extensive experimenta-
tions showed that a digital implementation of the colocated
Hoo controller performed very well without the need of
any experimental tuning. Digital implementation of the
o, noncolocated controller was less successful at sta-
bilizing Daisy even though the linear simulations showed
good performance and robustness levels. It was pointed
out that nonlinearities such as thruster deadband seem to
haved played a major role in making Daisy much harder
to stabilize in its noncolocated configurations. Further
work is underway to include nonlinearities and sampling
issues into the design technique. We wish to acknowledge
the help and support provided by Vince Pugliese, system
manager, and Regina Sun Kyung Lee, graduate student,
both from UTIAS, to carry out the experiments on Daisy.
Regina also provided the drawing of Daisy in Figure 5.
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