Sensing with tools extends somatosensory processing beyond the body

Luke E. Miller1,2,3, Luca Montroni1,2, Eric Koun1,2, Romeo Salemme1,2,3, Vincent Hayward4,5, Alessandro Farnè1,2,3,6

1. Integrative Multisensory Perception Action & Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292; Lyon, France
2. University of Lyon 1, Lyon, France
3. Hospices Civils de Lyon, Neuro-immersion, Lyon, France
4. Sorbonne Université, UPMC Univ Paris 06, ISIR, F-75005 Paris, France
5. Centre for the Study of the Senses, School of Advanced Study, University of London, London, UK
6. Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.

* Corresponding authors. Luke E. Miller: luke.miller@inserm.fr; Alessandro Farnè: alessandro.farne@inserm.fr.

The ability to extend sensory information processing beyond the nervous system1 has been observed throughout the animal kingdom, such as when rodents palpate objects using their whiskers2 or when spiders localize prey with their webs3. We investigated whether the ability to sense objects with tools4–9 represents an analogous information processing scheme in humans. Rather than mere distal links between the hand and environment10,11, we propose that tools are treated by the nervous system as sensory extensions of the body. Here we provide evidence from behavioural psychophysics, structural mechanics, and neuronal modelling in support of this claim. We first demonstrate that tool users can accurately sense where an object contacts a wooden rod with surprising accuracy, just as is possible on the skin. We next demonstrate that impact location is encoded by the tool’s modal response upon impact, reflecting a pre-neuronal stage of mechanical information processing akin to sensing with whiskers2 and webs3. Lastly, we used a computational model of tactile afferents12 to demonstrate that impact location can be rapidly re-encoded into a temporally precise spiking code. This code precisely predicts the behavioural of human participants, providing evidence that information encoded in motifs shapes localisation. Thus, we show that this remarkable sensory capability emerges from the functional coupling between material, biomechanical, and neural levels of information processing13,14.

Historically, researchers across scientific disciplines have focused almost exclusively on motor aspects of tool use15,16, despite the fact that tools convey behaviourally-relevant sensory information to the user when contacting a surface17. Indeed, tactile signals are critical for both hand and tool use since they provide information about objects that is unavailable in other modalities. One familiar example, first discussed in the seventeenth century by René Descartes18, is a blind person’s ability to perceive the environment through the tip of a cane19 (Fig. 1a). Despite almost four centuries since the publication of Descartes’ treatise, scientists have only recently begun investigating how hand-held tools are used to sense properties of the environment, such as object texture5, position8, and distance4. Tool-mediated sensing is therefore a poorly understood facet of daily human experience.

When using a rod to manipulate an object, do humans perceive where the object contacts its surface? Several distinct patterns may characterise perception during tool-mediated sensing (Fig. 1b). First, based upon a longstanding hypothesis (sensory distalisation)10, localisation may be confined to the tip of the rod regardless of the actual contact location. Alternatively, localisation may be projected to the proximal and distal regions of the rod (sensory projection), following the known deployment of spatial attention along a tool11. In contrast, we combine multiple lines of evidence to characterise how humans use a tool to extend somatosensory processing.

When measuring tactile localisation, it is common to require participants to indicate on a graphical representation of a limb where they were touched20. We adapted this task to the case of hand-held wooden rods (see Methods; Fig. 1b, Extended Fig. 1a). Participants localised impacts (seven distinct locations) on a downsized graphical representation of a rod, a task that requires mapping tactile signals within a coordinate system that is intrinsic to the space of the tool and not the external space it occupies. Localisation occurred following contact with an object through either self-generated action (active sensing) or passive reception of impact (passive sensing). Comparing these sensing modes let us infer the roles of sensory and motor signals in the perception of impact location.
In all experiments, we used affine regression to assess localisation performance. The slope reflects the perceived separation between landmarks and is therefore a measure of performance. Our analysis compared estimated slopes to random (slope: 0.25) and ‘ideal’ localisation (slope: 1). In doing so, we could test each hypothesis of tool-mediated sensing as only sensory embodiment predicts accurate localisation. We further adjudicated between sensory embodiment and projection (Fig. 1b) by comparing the Akaike information criterion of each model (ΔAIC) for each participant.

In an initial experiment (n=10) participants used both sensing modes (order counterbalanced) following a five-minute familiarization phase. Active sensing produces a rich array of motor (e.g., effference copies) and transient sensory signals (e.g., cutaneous vibrations) that could be used to extract impact location. Localisation during active sensing was highly accurate (slope: 0.93±0.09; one-sample t-test versus random: P<0.001; Fig. 1d), reflecting near-ideal performance (versus 1: P=0.46). Compared to active sensing, passive sensing largely removes motor-related signals while preserving most of the sensory signals. Participants consistently underestimated the distances between impact locations (slope: 0.57±0.04), as expected when informative cues are removed. Nevertheless, performance during passive sensing was still accurate (versus random: P<0.005), though substantially lower than in the active condition (paired t-test: P<0.005). These results clearly favour sensory embodiment over distalisation.

Follow-up experiments provided a more complete picture of extended sensing (Extended Table 1). To demonstrate the robustness of our initial findings, we replicated them for both active (Extended Fig. 2a) and passive sensing (Extended Fig. 2b). In a fourth experiment, we found that participants localised contact on a rotated drawing with equal accuracy as when the drawing was displayed parallel to the rod (paired t-test: P=0.44; correlation: r=0.89; Extended Fig. 2c-e), providing further evidence that users internally represent the rod in tool-centred coordinates.

Finally, we probed the importance of sensorimotor predictions for extended sensing. In a fifth experiment, we found that participants localised contact on a rotated drawing with equal accuracy as when the drawing was displayed parallel to the rod (paired t-test: P=0.44; correlation: r=0.89; Extended Fig. 2c-e), providing further evidence that users internally represent the rod in tool-centred coordinates.

Our behavioural experiments converged to a similar conclusion. Almost every participant’s performance was above chance (Fig. 1e), ruling out the sensory distalisation model. Furthermore, sensory embodiment was the significantly better model than sensory projection in the vast majority of datasets (54/70 versus 3/70; mean ΔAIC: 7.62±0.76; Fig. 1f). These results are in line with the predictions of sensory embodiment and provide strong evidence that tools function as sensory extensions of the body.

The high accuracy observed in each experiment demonstrates that sensory embodiment is largely independent of sensing mode. The differences between active and passive sensing do, however, have implications for the information used during extended sensing. Superior performance during active sensing (Extended Fig. 2g) suggests that human tool-users utilize information encoded in both sensory and motor signals. Nevertheless, the remarkably high accuracy during passive sensing suggests that sensory signals alone, encode a substantial portion of spatial information.

How does a tool communicate impact location to the hand? Tactile mechanoreceptors in the human hand are highly sensitive to the cutaneous vibrations elicited during object manipulation. According to the Euler-Bernoulli beam theory, a rod resonates according to well-defined modes when contacting an object (Supplementary Data Section 1). Crucially, the relative amplitude and phase of each mode depends almost exclusively on where contact occurs along the rod, relative to its length (Fig. 2a; Extended Fig. 3). The modal response thus encodes an invariant signal of location, suggesting that rods are a highly robust means to extend somatosensory processing provided that users can predict key aspects of their material and geometry (Experiments 5–6). We therefore hypothesized that during tool-extended sensing, a rod mechanically transduces impact location into vibratory motifs (Fig. 2a-b) that are decoded by the somatosensory system.

We recorded vibrations on the handle of a rod and the index finger of three human participants while they performed either passive (participants LO and AY) or active (participant EA) extended sensing (Fig. 2c; Extended Fig. 1c). Behavioural results for each participant were within the range observed previously (Extended Fig. 2i). Impact at each location produced distinct vibratory motifs (Fig. 2d) that were highly consistent across trials (Extended Fig. 4). Support vector classification found that the location-specific pattern of each motif emerged extremely rapidly, with classification accuracy reaching 90% within ~8 ms post-impact (Fig. 2e). High classification accuracy was also found for patterns of a motif’s phase-locked temporal encoding (Extended Fig. 5a-c), a subspace of the modal response whose analysis is computationally efficient and neurophysiologically plausible (Supplementary Data Section 2). Similar results were found for cutaneous vibrations (Extended Fig. 6). Vibratory motifs are therefore an informationally rich signal that is likely exploited during tool-extended sensing.
What message does a tool send to its user’s brain? Our findings thus far provide evidence that a rod’s modal response reflects the initial transduction of information about impact location. This finding is comparable to object localisation during whisking by rats, where it has been suggested that information is initially processed pre-neuronally by the mechanics of the whiskers. If vibratory motifs are to guide behaviour, mechanoreceptors in the hand must transduce them into neural response patterns that preserve the location-specifying information, a large portion of which is carried by a motif’s phase-locked encoding. Pacinian mechanoreceptors are good candidates for this transformation given their broad frequency tuning, temporally precise spiking, and phase-locked response properties. They have been proposed to play an important role in encoding vibrations transmitted through hand-held objects. We leveraged a biologically plausible skin-neuron model of the hand (TouchSim) to simulate how impact location may be re-encoded by mechanoreceptors during extended sensing.

We simulated the spiking responses of a population of forty-two Pacinian mechanoreceptors to the mechanical vibrations described above. Simulated spikes showed a temporally precise phase-locked relationship with the motifs, which provided significantly better fits than firing rate. Similar results were found when motifs were instead used as predictor variables. Furthermore, both spike-timing and motifs accurately predicted the trial-by-trial directional errors, further underscoring their importance for behaviour.

In conclusion, we have provided behavioural, mechanical, and computational evidence that humans utilise tools as sensory extensions of the body. Our results suggest that the human nervous system contains finely tuned mechanisms for decoding vibratory motifs, including sensorimotor internal models that can anticipate the structural dynamics of rods. Object localisation with a rod therefore represents an important human model of extended sensing, where information processing is distributed across the mechanical response of the tool, the biomechanics of the extremities, and the neural circuits of the sensory-motor system. Morphological and neural changes in the hand during human evolution may reflect selection pressure to maximize the functional coupling and embodiment of tools.

Acknowledgments
This work was supported by an FRM postdoctoral fellowship to L.E.M., from ANR-16-CE28-0015 Developmental Tool Mastery to A.F. and V.H., by a Leverhulme Trust Visiting Professorship Grant to V.H., and from IHU CeSaMe ANR-10-IBHU-0003, Defi Auton Sublima, and the James S. McDonnell Scholar Award to A.F. All work was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon. We thank Frédéric Volland for his help constructing the experimental setup. We would also like to thank Blake Miller and Andrew Schork for their statistical advice, as well as Lisa Quadt, Alice Roy, Eric Leonardis, and Konstantina Kilteni for their feedback on an earlier version of the manuscript.

Author contributions
L.E.M., V.H., and A.F. conceived the study and designed the experiments. L.E.M. and L.M. collected and analysed the behavioural experiments. E.K. and R.S. constructed equipment for the vibration experiment and helped process the data. L.E.M., V.H., and A.F. designed and analysed the neuronal modelling and vibration experiments. V.H. developed the theoretical framework presented in the Supplementary Data. L.E.M., V.H., and A.F. wrote the paper. All authors approved the final version of the paper.

Author information
The authors declare no competing financial interests. All data has been archived at the Open Science Framework (https://osf.io/283eq/). Correspondence and request for materials should be addressed to luke.miller@inserm.fr or alessandro.farne@inserm.fr.
18. Descartes, R. La Dioptrique (1637). (Œuvres et lettres, 1987).
Figure 1. Methods and behavioural results

(a) Descartes’ blind man using two canes to triangulate the distance of an object. Image adapted from an illustration made by Descartes. (b) Hypothetical models of localisation. Left: Coloured regions correspond to where contact is felt, as predicted by each model. White regions are perceptually “invisible” to the user. Right: Expected patterns of results when modelling perception as a function of actual impact location. Unlike the other two hypotheses embodiment predicts that impact localisation will manifest as a linear function (blue line) for the entire body of the tool, mirroring what we observe for tactile localisation on a body part. (c) Three phases composed each trial, including object contact (top row) and localisation with the cursor (red circle; bottom row). (d) Group level affine regressions for Experiment 1 (n=10). Dashed lines correspond to the 95% confidence interval. The grey line corresponds to the equality line. (e) Slope for each participant from Experiments 1–5 (n=60). The distalisation model’s prediction (i.e., chance performance) is shown by the orange line. (f) Model comparisons (AIC-difference: Projected - Embodiment) for every participant in Experiments 1–5 (n=60). The majority of comparisons favoured sensory embodiment (blue) with substantially less either favouring sensory projection (purple) or providing equivocal evidence (grey). (g) Experiment 6 (n=10): Participants failed to differentiate between distinct locations when contact was made with the rod’s non-rigid portion (purple; unpredictable dynamics). In contrast, localisation had a positive slope when contact was made with the rigid portion (green; predictable dynamics). (h) Judgments shown in g were above the equality line because participants overestimated the contribution of the rigid portion to the rod’s overall length (76.3% ± 4.8). Judgments overlapped with the equality line (gray) when normalised to the felt rigid-to-length ratio. Error bars in g and h correspond to one s.e.m.

Figure 2. Vibratory motifs emerge rapidly during extended location sensing

(a) The amplitude of the first through fourth resonant modes as a function of impact location (see Supplementary Data). Impact at each location along the rod produces a unique combination of modal amplitudes, which we term vibratory motifs. (b) Hypothetical feature space of motifs constructed from the modes shown in a. The geometry of this space is, theoretically, identical for all uniform rods used by humans. Impact at any location (circles) from the handle (H) to tip (T) produces a motif that is situated in a unique position within the feature space. The coloured dots correspond to the impact locations used in our experiment. (c) Vibrations on the tool (green) and index finger (purple) were measured simultaneously following impacts at seven distinct locations (L1–L7). (d) Motifs from EA’s dataset for L1 and L3. Similar patterns were observed for LO and AY. (e) The accumulation of location information within motifs was rapid for each participant and when all datasets were combined (orange), demonstrating that each participant’s motifs share location-specifying features. All cases rivalled what was observed for vibrations when the tool was fully clamped (brown; see pilot experiment in Supplementary Data Section 3), suggesting that the information encoded by motifs is strengthened by the biomechanical properties of the hand.
Figure 3. Impact location is encoded in the spike-timing of tactile mechanoreceptors in the hand
(a) The distribution of forty-two simulated Pacinian mechanoreceptors in the middle phalanx of the index finger. This image has been produced using TouchSim12. (b) Mechanical vibration (first 150 ms post-impact) on a randomly chosen trial from LO’s dataset. Vibrations led to temporally precise response patterns across the individual afferents (orange raster plot) and the population response (top). (c) We could accurately decode impact location from the population spike-timing. (Inset) The classification error rate increased dramatically for kernel widths greater than four milliseconds. (d-e) Model fits for each participant’s behaviour as a function of the number of predictors (140 data points per test): (d) Spikes and (e) Motifs. Solid lines correspond to \( R^2 \) and dashed lines correspond to predictive-\( R^2 \).

Methods
Participants
Sixty-three participants in total completed our behavioural experiments: Ten in Experiment 1 (9 right-handed, 4 males, 27.2±3.1 years of age), ten in Experiment 2 (10 right-handed, 5 males, 27.8±2.6 years of age), ten in Experiment 3 (9 right-handed, 4 males, 26.5±2.5 years of age), twenty in Experiment 4 (all right-handed, 12 males, 22.6±2.1 years of age), and ten in Experiment 5 (9 right-handed, 7 males, 29.1±2.7 years of age); these same ten participants also completed Experiment 6 (order counterbalanced). A further three right-handed participants completed a more in-depth psychophysical experiment: LO (female; 24 years of age), AY (female; 25 years of age), and EA (male; 20 years of age). All participants had normal or corrected-to-normal vision and no history of neurological impairment. Every participant gave informed consent to participate in the experiment. The study was approved by the ethics committee (CPP SUD EST IV, Lyon, France).

Apparatus and impact localisation task
The setup for each behavioural experiment (Extended Fig. 1a) was as follows: Participants were either seated comfortably in a cushioned chair (Experiments 1–4, and 7) or standing in a comfortable posture (Experiments 5 and 6). Their right arm was placed in a padded arm rest and hidden from view with a long occluding board. An LCD screen (47 x 30 cm) lay backside down nine cm from the edge of the table and in the length-wise orientation (centred on the participant’s midline). This orientation allowed us to display a long computer drawing of the tool that was viewed by the participants during the task (see below).

Several types of wooden rods were used in the experiments. Their details are as follows: In Experiments 1–3 and 7, the wooden rod (Byron & Byron; Model: tiara draw rod) had a 10-cm handle and an 83-cm body (0.6 cm radius). In Experiment 4 the wooden rod had a 12-cm handle and a 60-cm body (0.75 cm radius). In Experiment 5 the wooden rod had a 12-cm handle and an 83-cm body (0.75 cm radius) that was insulated from handle-to-tip with a lightweight foam covering. In Experiment 6, we used a hybrid tool that was ~half rigid and ~half non-rigid. The rigid portion of the rod was wood with 12-cm handle and a 38-cm body (0.75 cm radius). As before, the rod was insulated with a lightweight foam material that covered both the wooden portion and extended a further 45-cm, thus forming a non-rigid portion. The dynamics of each half were therefore very different, with only the rigid portion being predictable to the participant, given that it was the only portion they were exposed to prior to wielding (see below). The rod was held in the participant’s right (Experiments 1–4 and 7) or dominant hand (Experiments 5–6) and was always fully blocked from view by the occluding board.

The task in each experiment was to localise where an object contacted the surface of the tool by pointing to the corresponding location on the graphical representation of the tool. This drawing was scaled to 40% of the rod’s actual dimensions; it began 14.5 cm from the edge of the table and was raised 4 cm above the table surface. A red cursor (0.2 cm radius) was placed 10 cm to its right. The drawing was displayed in parallel with the actual rod in all experiments except Experiment 4. In this experiment, the drawing of the rod was rotated 90-degrees counter-clockwise on half of the trials (randomly interleaved with the parallel drawings). This manipulation allowed us to more rigorously characterise how the rod is internally represented. If localisation performance is independent of drawing orientation, that would provide strong evidence that the rod is represented in a tool-centred coordinate system. Indeed, debriefing interviews after the experiment found that most participants found both orientations as equally challenging. While it cannot be completely ruled out that localising on the rotated drawing was done using explicit mental rotation, it is unlikely since that the majority of participants reported that the task required little effort or attention to switch between response modes (i.e., upright and rotated).
In most experiments (1–3 and 5–7) there were seven distinct impact locations (i.e., landmarks), ranging from 13 to 73 cm from the handle (by steps of 10 cm). In Experiment 4 there were six distinct landmarks, ranging from 10 to 60 cm from the handle (by steps of 10 cm). This information was never given to participants. There were 10 trials per landmark in the first six experiments (70 trials total) and 20 trials per landmark in the final experiment (140 trials total). The specific landmark for each trial was chosen pseudo-randomly.

The object used to contact the rod in the first six experiments was a wooden block (3 cm width) with a tightly wrapped wool padding (~3.5 cm contact area) to minimize the sound of impact. The objects used in the final experiment were a narrow plastic stick (0.2 cm width) for two participants (LO and AY) and a wooden block (3 cm width) for one participant (EA). To further minimize auditory cues during the task, pink noise was played over headphones. Pilot studies confirmed that residual auditory cues were minimal and uninformative about impact location.

Our experiments tested two distinct types of sensing impact location: Active sensing (Experiments 1, 2, and 4–7) and passive sensing (Experiments 1, 3, and 7). During active sensing, the participant wielded the tool into contact with the object. They were instructed to briefly tap the object a single time and not rest the tool on it, meaning that active wielding required both self-generated active and reactive movements. During passive sensing, the experimenter manually moved the object into contact with the tool, transferring mechanical energy into the tool’s body that was passively received by the participant. The only tool movements in this sensing mode were passively reactive. In Experiment 1, where each participant sensed both actively and passively, each sensing mode occurred in distinct blocks (order counterbalanced across participants).

Experiments 1–4 and 7 began with a sensorimotor familiarization session. During this session, participants were told to explore how the tool felt to contact a surface (padded edge) at different locations on the tool. Emphasis was placed on the vibratory aspect of the contact. Participants had full auditory and visual feedback throughout this familiarization session, which was self-paced and lasted for five minutes. Next, these participants were given a brief practice session (seven trials) with the localisation task to familiarize themselves with the trial structure (see below). The actual localisation task commenced following this practice session.

In contrast, there was no sensorimotor familiarization or practice sessions in Experiments 5 and 6. Instead, participants were handed the rod only after the experiment was ready to commence, beginning the actual localisation task roughly two minutes after they were given the rod. At no time did they ever see or hear the rod. Only somatosensory feedback about the rod’s material and geometry was available. This allowed us to test whether specific familiarity with the rod was necessary for accurate localisation, or whether participants could use general knowledge about the dynamics of rods to sense impact location (see Supplementary Data).

The trial structure in each experiment was as follows: In the ‘Pre-contact phase’, participants sat with their left hand on a trackball, their trunk centred on the drawing of the tool, and their right hand holding the tool situated behind the occluding board. A red cursor (circle, 0.2 cm radius) was placed 10 cm to the right of the tool drawing. A ‘go’ cue (tap on the right shoulder) indicated start of the ‘Contact phase’. They therefore had to either move the tool into contact with the object (active sensing; Experiments 1, 2, and 4–7) or wait passively to sense the impact (passive sensing; Experiments 1, 3, and 7), which occurred approximately one second following the ‘go’ cue. In the final phase of the trial—the ‘Localisation phase’—participants made their judgment about impact location. This was done by moving the cursor onto the graphical representation of the tool corresponding to the impact location and clicking the mouse. The drawing then briefly disappeared for 500 ms before reappearing in the same position, indicating the beginning of the next trial. Participants never received feedback about their performance or the correct impact location.

Participants used a “hybrid” rod in Experiment 6 (see above for details). At the end of the experiment, participants used a tape measure to report the felt length of the rigid and non-rigid portion separately. A debriefing interview following the experiment found that participants were confident in the length and material of the wood portion. Given that only somatosensory information about the material from the handle was available to participants in Experiment 6, as far as they knew the rod was only made of wood—post-experiment interviews showed that this was indeed the belief of every participant at the beginning of the experiment. They were therefore unsure of what the non-rigid portion of the rod was made of and used a purely cognitive strategy to infer that contact on its surface must be farther than the tip of the wood portion.

**Vibration recording apparatus and experiments**

We hypothesised that information about impact location would be encoded by the modal response of the rod when contacted. Vibrations were recorded using miniature tri-axis analogue accelerometers (Analog Devices; Model ADXL335). These devices have low mass (40.0 mg), wide frequency bandwidth (0–1,600 Hz in X and Y; 0–550 Hz in Z), and high dynamic range (~3.6 to 3.6 g). The signals were digitized with a 14-bit resolution and sampled at a frequency of 2.5 kHz over a five-second window using a data acquisition device (National Instruments; Model USB-6009). Recording was restricted to the Z-axis as this contained the bulk of the impact response. Adhesive tape was used to keep the accelerometers in place on the surface of interest. For participants LO and AY, a single accelerometer was attached to the handle of the tool and one to the middle phalanx of the index finger (D2m; dorsal surface) and vibrations were recorded from each surface simultaneously. For participant EA, we decided to focus exclusively on mechanical vibrations. Therefore, a single accelerometer was attached to the base of the tool shaft. All data was recorded and processed using Matlab 2016b (The MathWorks).
Vibration Experiment: Tool held in the hand

The goal of this experiment was to investigate whether location information was encoded in mechanical vibrations during tool sensing (Extended Fig. 1c). Vibrations were recorded while participants passively (LO and AY) or actively (EA) sensed impact location. The behavioural task was identical to the behavioural experiments with the exception that there were twenty trials per each of the seven locations. In the passive sensing condition, each participant was trained to hold the tool as still as possible and with a similar grip force across trials. Great care was taken by the experimenter to ensure that this object contacted the tool with a similar force across trials. Recordings made directly from the tool occurred at its base and approximately two centimetres proximal from the beginning of the handle. The index finger was placed directly behind this accelerometer. In the active sensing condition, EA was trained to hold the tool with a stable grip force when resting and to contact the object with as similar of force as possible across all trials. Vibrations were recorded from a single accelerometer placed at the base of the tool shaft one cm distal to the handle. We set a minimum ten-second interval between each trial to ensure that all vibrations had fully dampened.

Signal processing

We used the following steps to process the vibrations recorded on each trial of every experiment: First, we converted the signal from voltage into a unit of acceleration, $g = 9.81 \text{ m/s}^2$. Second, we filtered the signal using a zero-phase FIR filter with a bandpass between 100–600 Hz. This specific bandpass was chosen because it isolated the second through fourth modes (Fig. 2a–b), it served to remove most of the motor components from the accelerometer readings, and pilot studies indicated that it best captured location information. Third, we aligned the onset of vibrations to the time-point zero and cut the signal with a window of -100 to 300 ms post-impact. Fourth, we used mean-subtraction to remove the baseline from the signal.

Skin-neuron model

We used a biologically plausible computational skin-neuron model$^{1,2}$ (TouchSim) to simulate putative mechanoreceptor responses in the hand during tool-mediated sensing. Matlab code to implement the model is freely available online (http://bensmaialab.org/download/). The reader should refer to the original article for an in-depth treatment of the methods. Briefly, TouchSim simulates the spiking response and the spatial distribution of three different types of tactile afferents in the volar region of the hand: slow-adapting type one, rapidly adapting, and Pacinian. The responses for each afferent type to a given stimulus are determined in two sequential stages: First, both the local deformation of the skin (static component) and the propagation of surface waves across the hand (dynamic component) are estimated. Second, this spatiotemporal pattern of stresses is used as input into afferent-specific integrate-and-fire models to determine the spiking response to the given stimulus. The model parameters of each afferent were derived from spiking data obtained in monkeys. The simulated responses of afferents closely match the known spiking responses (both millisecond precise spike-timing and rate) of actual afferents to various classes of stimuli (e.g., vibrations, edges, textured surfaces).

We modelled the responses of a population of Pacinian afferents to the mechanical vibrations measured in the vibration experiment. The population was composed of forty-two realistically distributed afferents in D2m; we confined our population to D2m as this was adjacent to where vibrations were measured from the handle. The response profile of each afferent was binned with a one-millisecond resolution, allowing us to investigate its spike-timing with high temporal precision. To more realistically simulate afferents, the temporal profile of their responses included stochastic noise and considered known mechanical and spiking delays. Population-level spiking was created by summing the spiking of each individual afferent. The rate code for each afferent was calculated as its firing-rate over time.

The mechanical vibration dataset for each participant (LO, AY, and EA) was used as input for the model. Double integration with the trapezoidal method was used to convert acceleration (m/s$^2$) into displacement ($\mu$m). A zero-phase FIR filter with a high-pass at 80 Hz removed any accumulation of low-frequency error in the signal during this process. The time window of each vibration was restricted to 0 to 150 ms post-impact. The modelled stimulus area had a radius of 7 mm and an indentation of 2 mm and was centred on D2m. This size roughly approximates the actual stimulus area when grasping a tool. Virtually identical results were found for a stimulus area with a radius of 3 mm (data not shown).

Data analysis

Behavioural analysis

To assess a participant’s ability to localise impact location on a tool, the mean localisation judgement for each of the landmarks was fit with a least-squares affine regression. The decision to fit our data with a linear model was made prior to collecting data and was because non-linear models did not provide better fits in pilot experiments. The judged impact location on the drawing was converted from pixels into ‘centimetres’, i.e., tool space, and was modelled as a function of actual impact location. The slope of the regression was used as our main measure of localisation ability, although identical results are found when analysing the intercept.

To first assess whether the slope was greater than expected by chance (as is predicted by the sensory distalisation model), we created a bootstrapped distribution of the slopes of regressions fit to simulated datasets of random guesses (100,000 simulations). The upper 95% confidence interval of this distribution (i.e., 5000th highest ranked element) was a slope of 0.25; A one-sample t-test was used to compare the actual slopes to this value. Next, to assess whether performance was ‘near ideal’, we used a one-sample t-test to compare the actual slopes to 1 (i.e., the equality line) and the actual intercepts to 0. Paired t-tests were used in Experiments 1 and 4 to compare performance in the within-subject conditions. All statistical tests were two-sided.
We further fit every participant’s data (first five experiments) with the predicted pattern of results from the sensory projection model (Fig. 1b, right inset). For Experiment 4, this was modelled as a proximal judgment of 10 cm for contact at the first three landmarks (actual location: 10, 20, and 30 cm) and a distal judgment of 60 cm for contact at the last three landmarks (actual location: 40, 50, and 60 cm). For all other experiments, this was modelled as a proximal judgment of 13 cm for contact at the first three landmarks (actual location: 13, 23, and 33 cm) and a distal judgment of 73 cm for contact at the last four landmarks (actual location: 43, 53, 63, and 73 cm). Akaike information criterion (AIC) was used to compare the fit of the sensory projection model with that of the sensory embodiment model (i.e., the equality line in a linear regression; Fig. 1b, right inset). The model with the lower AIC score provides a better fit to the data. A significance cut off for the difference between fits (ΔAIC) was set to 3.22, which means that the better model is five times more likely to explain the pattern of judgments than the worse model.

In Experiment 6, we sought to determine whether participants accurately rescaled their internal map of the rod to their estimated rigid to non-rigid ratio. All participants except one reported that the rod had both a rigid and non-rigid part and all participants over-estimated the actual contribution of the rigid portion to the rod’s overall length (0.76 ± 0.05). We hypothesised that a rescaling of this map would manifest itself as an over-estimation (i.e., above the equality line) of where on the drawing they localised impacts on the rigid portion. Each participant’s proportion estimate was used to normalise their localisation judgments to compare the actual and ideal pattern of rescaling.

Analysis of vibrations

We first investigated whether impact at distinct locations on a tool led to highly reproducible vibration patterns, termed vibratory motifs. We measured the cross-correlation between every possible unique pairwise comparison for vibrations (time window: 0–100 ms) within each location (190 per location, 1330 in total). This was done separately for each surface and for each participant. The distribution of values was characterized by taking the median cross-correlation value and the interquartile range.

We next classified impact location from vibratory motifs using a support vector machine (SVM) with a radial basis kernel. Our classification scheme used 5-fold cross validation. Thus, we trained the classifier on four subsamples of the data (i.e., 80% of the trials) and tested classifier performance on the leftover subsample (i.e., the remaining 20% of the trials). Each fold had an equal number of items per impact location. The hyperparameters of the SVM, C and γ, were tuned using grid search; tuning occurred separately for each of the five classification iterations. We specifically sought to characterize when a location-specific pattern emerged in the rod’s modal response. The features for classification were therefore subsets of the modal response across multiple temporal window sizes (2 to 60 ms, in steps of 2 ms). Classification was performed using the e1071 package \(^{32}\) and its interface with LIBSVM \(^{33}\). This was implemented with R version 3.2.3. \(^{34}\) Chance classification (i.e., random guessing) was ~14%.

Analysis of afferent responses

Impact location was classified from the summed millisecond-precise spiking of the entire PC population (0–100 ms post-impact). As before, we used an SVM (5-fold cross validation) for classification with hyperparameters that were tuned using grid search. The features for classification were subsets of the spiking response across multiple time window sizes (5 to 100 ms, by steps of 5 ms). These results can be thought of as providing a theoretical lower bound for the accumulation of location information in the nervous system. Chance classification was ~14%.

The coding of tactile information by the somatosensory system is often dependent upon the millisecond precise spiking of its first-order neurons. \(^{26,35-37}\) To investigate whether impact location coding was dependent upon millisecond precision, we convolved the population-level spiking response on each trial with a Gaussian kernel at six distinct widths (1, 2, 4, 8, 16, and 32 ms). We then used an SVM to classify impact location from the first 50 ms of its response. This process was repeated for each of the six kernel widths and for each participant. The distribution of values was characterized by taking the median cross-correlation value and the interquartile range.

We next attempted to compare the ability of a spike-timing code and a rate code to model each participant’s behaviour. We hypothesised that a rescaling of this map would manifest itself as an over-estimation (i.e., above the equality line) of where on the drawing they localised impacts on the rigid portion. Each participant’s proportion estimate was used to normalise their localisation judgments to compare the actual and ideal pattern of rescaling.

Data and code availability

All data has been archived at the Open Science Framework (https://osf.io/283cq/). Analysis code will be made available upon request to the corresponding authors, L.E.M. and/or A.F.
### Extended Data

#### Extended Table 1. Behavioural results

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Condition</th>
<th>Slope</th>
<th>Intercept</th>
<th>$R^2$</th>
<th>t-Test Type</th>
<th>Comparison</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Active</td>
<td>.93±.09</td>
<td>-2.20±2.01</td>
<td>.94±.02</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>7.82</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>.77</td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>.09</td>
<td>.33</td>
</tr>
<tr>
<td></td>
<td>Passive</td>
<td>.57±.04</td>
<td>14.18±3.3</td>
<td>.85±.02</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>7.08</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>9.75</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>4.30</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paired</td>
<td>Slope</td>
<td>5.43</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept</td>
<td>4.63</td>
<td>.001</td>
</tr>
<tr>
<td>2*</td>
<td>Active</td>
<td>.94±.04</td>
<td>-1.13±2.72</td>
<td>.93±.01</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>16.04</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>1.48</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>0.41</td>
<td>.69</td>
</tr>
<tr>
<td>3*</td>
<td>Passive</td>
<td>.77±1</td>
<td>9.11±3.76</td>
<td>.87±.04</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>5.22</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>2.34</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>2.43</td>
<td>.04</td>
</tr>
<tr>
<td>4**</td>
<td>Parallel</td>
<td>.95±.04</td>
<td>0.08±1.72</td>
<td>.91±.01</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>16.08</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>1.06</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>0.04</td>
<td>.97</td>
</tr>
<tr>
<td></td>
<td>Rotated</td>
<td>.94±.05</td>
<td>-0.39±1.78</td>
<td>.92±.01</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>14.04</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>1.32</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>0.22</td>
<td>.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paired</td>
<td>Slope</td>
<td>0.88</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept</td>
<td>0.53</td>
<td>.61</td>
</tr>
<tr>
<td>5*</td>
<td>Active</td>
<td>1.13±.05</td>
<td>-4.30±3.38</td>
<td>.95±.01</td>
<td>One-sample</td>
<td>Slope vs. 0.25</td>
<td>19.40</td>
<td>&lt;.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope vs. 1</td>
<td>2.84</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept vs. 0</td>
<td>1.27</td>
<td>.24</td>
</tr>
</tbody>
</table>

* n=10; ** n=20; Statistical tests were two-sided. Summary values are presented as mean ± s.e.m.

#### Extended Table 2. Multivariate models with forty-two predictor variables

<table>
<thead>
<tr>
<th>Participant</th>
<th>Sensing</th>
<th>Features</th>
<th>$F_{d.f.}$</th>
<th>$R^2$</th>
<th>$p-R^2$</th>
<th>RMSE</th>
<th>AIC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>Passive</td>
<td>Spike timing</td>
<td>11.04</td>
<td>0.83</td>
<td>0.65</td>
<td>7.20</td>
<td>1038.07**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>1.70</td>
<td>0.42</td>
<td>-0.22</td>
<td>13.13</td>
<td>1206.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motifs</td>
<td>22.52</td>
<td>0.91</td>
<td>0.83</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>AY</td>
<td>Passive</td>
<td>Spike timing</td>
<td>10.02</td>
<td>0.82</td>
<td>0.65</td>
<td>8.17</td>
<td>1073.46**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>1.62</td>
<td>0.45</td>
<td>-0.20</td>
<td>14.05</td>
<td>1225.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motifs</td>
<td>17.9</td>
<td>0.89</td>
<td>0.77</td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>Active</td>
<td>Spike timing</td>
<td>20.37</td>
<td>0.90</td>
<td>0.79</td>
<td>8.14</td>
<td>1072.55**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>1.73</td>
<td>0.37</td>
<td>-0.23</td>
<td>20.21</td>
<td>1327.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motifs</td>
<td>26.85</td>
<td>0.92</td>
<td>0.85</td>
<td>7.18</td>
<td></td>
</tr>
</tbody>
</table>

*140 data points per regression; $p-R^2$=predictive-$R^2$; RMSE=root-mean squared error; *44 degrees of freedom per model.

**Significantly better model
Extended Figure 1. Setup for the behavioural and vibration experiments
(a) The experimental setup for all behavioural experiments (see Methods for details). The object shown below the rod was used in the first three behavioural experiments. (b) The “hybrid” tool used in Experiment 6, which was half rigid (wood and insulation) and half non-rigid (insulation only). The foam is displayed as being open for presentation purposes only. The dimensions of the rod have also been altered for presentation purposes. See Methods for more details. (c) Setup for the vibration experiment, where accelerometers were attached to the handle and the participant’s index finger.

Extended Figure 2. Results of behavioural experiments
(a–f) Group-level affine regression for Experiment 2–5. Experiments 1, 2, 3, and 5 had an n of 10 and Experiment 4 had an n of 20. Coloured dashed lines around the model fits correspond to its 95% confidence interval. The grey line corresponds to the equality line. (c) Experiment 4: Pearson’s correlation between the regression slopes for when the drawing was displayed in parallel with the actual rod and rotated 90-degrees counterclockwise. (g) Left: Slope for every dataset from Experiments 1–5 (n=60). The distalisation model’s prediction (i.e., chance performance) is shown by the orange line. Right: Average slope with 95% confidence intervals. (h) Experiment 6: Contact at identical locations on a wood (green) and foam (purple) tool leads to drastically different vibration patterns. In the case of the hybrid tool, participants could only feel the wooden portion of the rod with their hand, making the vibration pattern from the foam portion of the rod unexpected and therefore uninformative. (i) Localisation for each participant in the vibration experiment was within range of behaviour observed in the other six experiments.
Extended Figure 3. Modal responses of a rod under different initial and boundary conditions

(a) Independent of the material of a rod, the modal frequencies in the free case alias to the next highest modes in the clamped case. In the plot, this can be clearly seen for a simulated rod with a circular cross-section (length: 83 cm; cross-section radius: 0.8 cm) that was made of one of a diverse set of materials of varying elasticities and densities. The grey line corresponds to the equality line between the frequencies of each limit case. (b) Mode shapes for the first four modes in the free case. (c) Mode shapes for the first five modes in the clamped case. Modes with similar shapes as the free case are matched by colour. (d-e) Simulated displacement, velocity, and acceleration following impact on a free rod at \( l^* = 0.33 \) (d) and 0.5 (e). The zero crossings of velocity and acceleration are presented as tick marks above the relevant curves. The weights are taken from the mode shapes. (f-g) Same for the clamped case, but minus the ‘whipping’ first mode. This is justified since all other mode shapes and frequencies are shared between cases. Strikingly, there is a high degree of similarity between the modal responses in each case for impacts at identical locations. Furthermore, it can be noticed in all panels that the sequences of zero crossings tend to repeat themselves owing to the special distribution of modal frequencies reflected in the phase differences. After a few periods of the low frequency modes these sequences can generally be easily discriminated. Thus, an effective feature space could be simply a relatively small number of time intervals between extrema in a suitably filtered signal.
Extended Figure 4. Trial-by-trial vibrations for each participant were highly consistent

When held in the hand, vibrations following impact at each location on the tool were highly consistent for each participant: (a) LO, (b) AY, and (c) EA. The upper left plot in each panel corresponds to the histogram of each within-location Pearson’s correlation (0–100 ms post-impact, corresponding to 250 data points per test). The shift in the distribution towards high correlations for each participant (LO: median $r=0.58$, IQR=0.19; AY: median $r=0.73$, IQR=0.16; EA: median $r=0.79$, IQR=0.23) provides evidence for the emergence of vibratory motifs during passive and active sensing. The traces correspond to the motifs for each location (Landmark 1 [blue] to Landmark 7 [red], from left to right). The grey traces correspond to each individual impact and the colour traces correspond to the mean trace (0-100 ms post-impact; colour-coded by location).
Extended Figure 5. The dimensionality of motifs can be reduced to their zero crossings (a-b) The motif (black; acceleration), zero crossing in velocity (blue), and spikes (orange) of a representative trial from (a) EA and (b) LO’s datasets. We observe a precise temporal relationship between zero crossings in velocity (blue) and the spikes of a Pacinian mechanoreceptor simulated with TouchSim (orange). (c) We observed high classification accuracy when decoding impact location from a motif’s pattern of zero crossings in acceleration for each dataset (chance~14%). (d) We could accurately model each participant’s trial-by-trial behaviour given the temporal pattern of zero crossing in the corresponding motif’s acceleration (140 data points per test). We plot the goodness of fit as a function of the number of predictors used in the model. Solid lines correspond to the $R^2$ and dashed lines correspond to the predictive-$R^2$.

Extended Figure 6. Results for skin recordings
We found similar spectral content between the mechanical (tool) and cutaneous (D2m) vibrations for both (a) LO and (b) AY. Both participants showed similar peaks in the power spectrum for the vibrations (0–200 ms post-impact) on the tool (black line) and skin (grey line). Further, the trial-by-trial correlations between the spectral content of the wood and skin vibrations (histograms on the right) were high for both LO and AY. (c) Histograms of all within-location comparisons for participants LO (left; median $r=0.65$, IQR=0.21) and AY (right; median $r=0.41$, IQR=0.17); Pearson’s correlation on the first 100 ms post-impact, corresponding to 250 data points per test. (d) The observed speed that location information accumulated within the vibrations on the skin was extremely rapid for each participant, mirroring what was observed when the tool was clamped with a bench vice (green line; see the experiment in the Supplementary Data Section 3).
Extended Figure 7. The effect of temporal smoothing on population spiking

Population-level spiking (-15 to 215 ms post-impact) of the simulated afferents for randomly chosen trials from four different locations: Landmark 1 (blue; trial #12), Landmark 2 (purple; trial #39), Landmark 4 (green; trial #68), and Landmark 6 (brown; trial #114). To reduce the temporal resolution of spiking, we smoothed the response with Gaussian kernels at six different widths. The resulting traces were then used to investigate whether impact location coding was dependent on millisecond-resolution spike-timing (see Fig. 4d). Only trials from EA’s dataset are shown in this figure, but nearly identical patterns of results were found for both LO and AY.
Extended Figure 8. Model fits for each participant.

The trial-by-trial population spike-timing of the putative afferents (left plots) precisely predicted the behaviour of each participant: (a) LO, (b) AY, and (c) EA. When the population rate code (centre plots) was used as features, the model did not provide a precise fit to the behaviour (see Data Table 1 and Extended Table 2). Vibratory motifs (right plots) also predicted behaviour with high precision. The grey line in all plots represents the equality line between actual and predicted behaviour, not the actual regression line.