
The Use of Awareness in Collision Prediction

Andrk Foisy Vincent Hayward Stkphane Aubry

McGill Research Center for Intelligent Machines
3480 University Street, Montrkal, Qu4bec Canada H3A 2A7

Abstract
We consider a world made up of a collection of ob-
jects which are all moving with respect to each other.
We wish to design a system capable to report and to
predict all possible object collisions; given that, all
relevant information is available in due time. Previ-
ous approaches are based on the notion of a distance
function that reflects the closest distance between
objects in the world at any given instant in time.
By explicitly including time in the representation,
we describe an algorithm based on the shortest pos-
sible time before the next possible collision. The al-
gorithm deals with all pairwise interactions between
objects, sorts the pairs with respect to their pre-
dicted collision time, and maintains the most likely-
to-collide pairs at the top of a stack. A new kind of
hierarchy in the representation of the world is thus
introduced. To find the shortest possible time before
a collision, we constrain the trajectory of objects by
imposing bounds on the objects’ acceleration and ve-
locity. All interacting pairs are classified into buckets
that reflect the imminence of the collision. The com-
puting cost is kept constant by reclassifying only one
pair from each bucket at each time sample.

1 Introduction
We consider a world made up of a collection of objects which
are all moving with respect to each other. We wish to design
a system capable to report and to predict all possible colli-
sions given that all relevant information is available in due
time.

The distance function plays a central role in real-time
path planning [I11 and in collision detection [12]. Its ob-
jective is to compute the closest interacting objects which
are assumed to be the most relevant interacting pair in the
environment. Although a lot of attention has been devoted
to computing the distance function in 2D and 3D for curved
surfaces, polyhedral objects, etc; [2 , 7, 8, 91 less attention
has been paid to the case of moving objects in the environ-
ment (4, 5, IO].

The instantaneous position of the objects is not sufficient
to fully reflect the imminence of possible collisions. For that
reason, we propose to use instantaneous velocities, as well
as velocity and acceleration bounds. This type of informa-
tion should be available either from a pre-determined model

CH2876-1/90/0000/0338$01.00 0 1990 IEEE

or from sensors. The intuitive motivation of the algorithm
presented in this paper is illustrated in figure 1, where the
“imminence” of a pair reflects the imminence of a collision
for that pair. ,

Closest pair but ... this pair’s “imminence” is greater

* Velocity vector

Figure 1: Closest pair, on the left, vs most imminent pair,
on the right.

Instead of computing only the shortest distance between
all objects, our approach is to evaluate T , the shortest pos-
sible time before the next possible collision. A brute force
approach to this problem leads to a very simple algorithm.
Let N be the number of objects. At each time sample, com-
pute the O (N 2) values for T (one for each pair of objects)
and find the smallest T . If T is smaller than the time sample,
then we predict a possible collision. This algorithm takes
O (N 2) computations a t each time sample, which is of course
unacceptable in many practical situations.

Our intuition tells us that we evaluate all the perceived
relationships with the objects which surround us and we
grade them on a scale of imminence or awareness. According
to that scale, we dispense a variable amount of attention to
each relationship. In addition, we dynamically adjust our
awareness of the state of affairs as the situation evolves.
Thus, it seems that our measure of awareness conveys the
frequeEcy at which we update a particular element of our
knowledge of the world according to its importance for the
task at hand. The ideas just discussed are outlined below in
the form of an algorithm called the Dynamic Awareness Al-
gorithm or DAA which explicitly includes time in the world
representation. Explicit time representations have already
been proposed for collision’ avoidance, for example in the
context of planning motions in time-varying environments

Although the discussion so far, and in the rest of the
paper, is concerned with the prediction of possible collisions,

1101.

338

Proc. IEEE Int. Conf. on Robotics and Automation, 1990. pp. 338-343

we believe DAA to be a general way of dealing with dynamic
complex situations. Nevertheless, the particular problem of
collision prediction provides us with a framework which is
both time particularly relevant to spatial reasoning problems
in robotics and provides a basis to illustrate and discuss DAA.

In brief, the algorithm proceeds as follows. The entire
set of O (N Z) pairs is considered at initialization time. A
measure of awareness, r , is computed for each pair in terms
of mutual distance, instantaneous mutual velocity, and ac-
celeration and velocity bounds. All pairs are partitioned
according to the measure of awareness and put into equiv-
alence classes of exponentially increasing cardinality. The
classes are implemented as a set of arrays that we call buck-
ets. The pairs in the smallest buckets are sampled more
frequently. Pairs percolate from bucket to bucket according
to the evolving value of r .

Without loss of generality, we detail this algorithm in
the case of a world consisting of balls. For a polyhedral
world, a conservative estimate of T can always be obtained
by covering the objects with spheres.

Section 2 gives a formal outline of the methodology. Sec-
tion 3 shows how to compute r . Section 4 describes the
updating mechanism for the data structures. Section 5 de-
scribes the complete DAA algorithm. In section 6, we discuss
the algorithm's complexity and the efficiency with which it
keeps track of possible collisions. Section 7 provides a simple
example of an application of the algorithm. And in conclu-
sion, we present some possible extensions.

2 Spatio-Temporal Description
Suppose we are given a set R = {RI, . . . , R N } of N moving
objects and a conseruatiue covering R of the elements of R.
(We say that R is conservative if and only if the closure of
the elements of 72 is a superset of the closure of the elements
of R). We assume in the following that the size of 72 is O (N) .

Suppose that to every r E R we can associate a coor-
dinate frame. That frame then defines a position function
f : (t) which we assume to be twice-differentiable with respect
to time in a given interval [0, TI.

Let P = {(ri,r,) I ri,rj E 72, i 5 j , S,j E (1 ,..., N}}.
To each element p = (T I , 7-2) E P we can associate a relative
position function ~ ~ (t) = f : , (t) - f:,(t), a relative veloc-
ity function Cp(t) = dZp/dt , a relative acceleration function
Zp(t) = d"Zp/dt2, all defined on [0, TI.

If p is made up of point objects, we s%y that p generates
a collision at time t if and only if Zp(t) = 0. In practice how-
ever, we consider that a collision occurs at time t whenever
IIZp(t)!l 5 ep, where ep is an arbitrary value for the minimum
safe distance between elements of a pair.

Of course, if ZP(t) is precisely known, all collisions may
be detected analytically. In general however, such perfect
knowledge is not available, and even if it were, the determi-
nation of all collisions would be computationally prohibitive
because of the large cardinality of P.

An alternative is then to test the norm of Zp(t) only at
discrete time intervals. In order to minimize the number of

such tests, it is desirable to perform them primarily for the
elements of P which are more likely to lead to a collision. A
function based on the pair's relative position function and
its derivatives, with the Euclidean distance as a norm, is a
candidate for such a measure of likelyhood.

The following relative motion equation always holds for
all pairs:

Equation (1) can be used to determine an underestimate
for the smallest time that can elapse before a collision occurs.
The object is then to find the time r , such that

for all possible relative trajectories, subject to the same con-
ditions as above. In the following section we develop the
awareness measure T .

3 Calculating the Measure r
We first consider the case without a speed bound. From
elementary mechanics we know that the higher the accelera-
tion of a body, the further it travels. Therefore, we want the
acceleration norm constant and maximum. Moreover, the
particle travels furthest when the acceleration is constant in
the direction which corresponds to the direction of motion.

Hence, setting Sp(to) = Q, Cp(to) = 50, dropping the
reference to a particular pair p, setting the magnitude of a'
to A, and setting to = 0; equation (1) becomes:

Z (t) = (/d a'dtdt) + 50 t + 5 0 = L i t 2 + CO t + zoo. (3) 2
From equation (3), the loci of feasible relative positions

at timet can be represented by a sphere S centered at Zo+50t
and of radius +At2. The boundary of S is the loci of relative
positions attained when the relative motion has maximum
constant acceleration. Since the radius of S grows with the
square of t while its center shifts linearly, it follows that any
point in space is reachable given a long enough period of
time (see figure 2).

A collision may occur during the time interval [O,At] if
and only if

where At is the time increment before the update.
In all cases, the earliest time T at which the above in-

equality can be verified occurs when a' is collinear with ZO +
COT and of opposite direction (see figure 3). Equation 4 be-
comes:

3t E [O,At],s.t.l(Z(t)II I e, (4)

(5)
A
2 11CoT + Zoll - -T2 I €.

Rearranging terms, squaring and solving for T , we find that
the earliest possible collision time is the smallest positive
root of the fourth-degree polynomial:

A2 - 4~~ -t (11 CO 112 - ~A)T ' + 2(Co.50)~ + (11Z011~ - E ~) = 0. (6)

339

Figure 2: 2-D projections of S (t) ; (top) without speed bound
and (bottom) with speed bound.

In summary, when there is no speed bound, a suficient
condition for a pair not to generate a collision is that 7, as
defined in equation 6, be greater than At.

We now include a bound V on the relative speed. As
above, we can represent the loci of feasible positions at time
t by the interior of a closed geometric figure S’ (see figure 2).
Of course, if the relative position function and its derivatives
are such that the maximum speed is not achieved over a given
time interval, then the results of the previous paragraphs
hold over that time interval.

Suppose however that the maximum speed is achieved
over a certain time interval. From elementary mechanics,
the relative motion generating the earliest possible collision
is split into two components: the acceleration component,
during which the movement has maximum constant accele-
ration a’, of magnitude A , and the velocity component, during
which the movement has zero acceleration and maximum
speed U’, of magnitude V .

In order to determine the value of T in the bounded speed
case, we first determine T , the time at which the relative

Figure 3: Graphical illustration of the four terms of equa-
tion 5 for a given increment At. 0 is the origin.

motion reaches speed V .
In this case, a collision may occur if and only if

and, as before, the earliest time T at which the above inequal-
ity can be verified occurs when a‘ is collinear with 50 + COT
and of opposite direction.

However, because T is a function of .’, whose support
is not known a priori, T is still not completely determined.
We need an additional equation which conveys the fact that
the two conditions on the motion components are only veri-
fied when v’(T) points towards the origin (the other object).
Hence C(T) and Z(T) are collinear.

The net effect of including the velocity bound in our cal-
culations is to reduce the loci of feasible relative positions
attainable after a given time interval. This is desirable since
it makes the measure less “conservative”. Namely, the more
refined the awareness measure, the less conservative it is, and
the fewer the false alarms. False alarms are characterized by
the belief that a collision may occur, according to the aware-
ness measure, where in fact better knowledge of the pair’s
actual relative trajectory is necessary to determine unam-
biguously whether a collision occurs. More involved compu-
tations is the price to pay for a less conservative measure.

4 Sequencing Data Structure
Given a At time increment, we can organize the O (N *) pairs
into a time-varying sequencing structure A (t) that indicates
the awareness of possible collisions. The structure A(t) will
serve the following two purposes:

1. To determine the most likely elements of P (section 2)
that may generate a collision. Consequently, we can
perform a thorough collision check for only those ele-
ments, thereby reducing the number of computations.

2. To sequence the collision checks among elements of P
which are equally likely to generate a collision, thereby
keeping the computational load nearly constant.

In order to implement the two above-stated purposes, we
partition the pairs into equivalence classes of unequal cardi-
nality, tzhe idea being to group pairs having similar “collision

340

imminence". The measure T will be used to perform such a
partition.

We conjecture that asymptotically exponential schemes
are adequate. Here we propose a binary partitioning scheme
where the cardinality of each bucket is a power of 2 .

Suppose the cardinality of P is M, and pog2(M)1 = L.
Using T as the key, we initially perform a partial sort of the
pairs such that they are inserted into an array A(t0) whose
elements are numbered p 1 , . . . , P M . The partial sort is such
that:

In other words, the value of the key r for any of the first
2k -1 elements must be less than that of any of the remaining
elements of the array. Each set {pz.- , , . . . , p z , - l } of pairs is
called a bucket and is denoted by B;. The cardinality of Bi
is 2i-1 and there are L buckets. Bucket B1 contains one pair
only and bucket BL contains M - 21'OEz pairs. We say
that a bucket Bj is lower than bucket Bi if and only if j > z.
Finally, we call N (p) the bucket number in which pair p is.

We will at every time interval test only one pair from
each bucket. Hence, we check L pairs that will be held in
a structure W (t) (see below). Since there are fewer pairs
in the higher buckets, those pairs will be tested more often:
this implements purpose 1 above. Furthermore, the com-
putational load will remain constant at each step, since the
number of selected pairs is constant: this implements pur-
pose 2 . Since the pairs from the lower buckets are assumed
not to be as likely to collide as the ones in the higher buckets,
they require less frequent verifcations.

5 The Algorithm
We assume that A(t0) has been properly initialized as above.

Let W(t,) be the array of pairs to be examined at a given
time t , = (At)n, where

w(tn) = (pl,PZI+(nmod21), . . * , h L + (n m o d Z L)) . (9)

Note that for the binary partitioning scheme the last element
of the above set does not always exist for all values of n. Each
bucket of A(tn) contributes one pair to W(tn).

Once the pairs are selected, we read in the current values
for Zo and Go, which we assume can be made available in real-
time from sensor readings. Then, we recalculate the value
of T for each element of W(t,) using one of the methods
'outlined in section 3.

The elements of W(tn) are sorted according to the new
value of T , and then replaced in the buckets in such a way
that the ordering in W(t,) is preserved in A(&). Finally, the
value of n is incremented.

Reporting a collision depends on r and on the cardinality
of B N (~) . For example, suppose the following holds:

r (p , t ,) > 2N(p)-1At. (10)

Equation 10 means that p is guaranteed not to generate
a collision until it is updated. That update will not occur
until a number of time increments, equal to the cardinality
of B N (~) , elapses. Hence no further check is necessary. Ob-
viously, since this test is immediate, it is to be hoped that
a large number of pairs will satisfy that property. If, on the
other hand, equation 10 does not hold, we say that p flags
the possibility of a collision. Whether a collision is indeed
imminent can then be checked by an exact collision detection
module (3, 61.

6 Complexity Analysis
The method's complexity is driven by the number of pairs.
There are originally M = 0 (N 2) pairs, where N is the num-
ber of spheres.

The original pre-processing partitioning step using r ta-
kes 0 (N 2) . This can be seen considering that A(t0) is ob-
tained by repeated application of the linear-complexity me-
dian algorithm over a decreasing geometric series, the size of
the input being 0(N2)[1].

At every time increment, we need to consider one pair
from each bucket. There are O(1og N 2) = 0(log N) buckets.
If we choose to update the array using a true sorting algo-
rithm, the on-line complexity is 0(log N loglog N), while if
a partial sort such as that performed at preprocessing time
is chosen, the on-line complexity becomes 0(log N). Intu-
itively, the total sort is better because it performs the best
possible ordering of the pairs of objects.

We say that the algorithm is complete if it can guarantee
that all collisions are flagged. Let Q be the time necessary to
process the 0(log N) pairs in the main loop of the algorithm.
A suficient condition for the algorithm to be complete is that

Q < At. (11)

Given a limited computational capacity, this cannot in
general be guaranteed. On the other hand, the algorithm is
capable to report whether its capacity is exceeded.

If At is chosen too small, equation 11 shows that the
processor may not be able to perform all the overhead asso-
ciated with every step: memory accesses, re-computation of
r , and resorting of the pairs.

If however At is chosen too large, equation 10 shows that
too many calls (false alarms) to the exact collision detector
may be made. These calls are in general costly because they
depend on the actual geometry of the elements of a pair.

7 Example
In this section we present a simple example that illustrates
the validity of the algorithm. The world comprises only three
objects in a 2D plane. Each object, named 01, 0 2 , and 0 3 ,

is a point (zero length radius) and is represented by a dot in
figure 4. The vectors in the figure represent the velocities.
At each sample, the position and velocity of each object is

341

\

t

I Sample 17

Sam le9 t-
l i I Sample 5

1 Sample 1

\

+ t

Sample 18

t
f4

Sample 14

t
Sample 10

Sample 6

Sample 2

I

1
Sample 19

Sample 15

t
r’

Sample 11

Sample 7

d

Sample 3

\

i

Sample 20

t

7
d

Sample 16

t
4

Sample 12

z
A

Sample 8

Sample 4

Figure 4: Example in a 2D world .with 3 objects. Each dot
represents an object: small dot is 01, medium dot is 0 2 ,

and the big dot is 03. A vector represents the velocity of an
object.

updated with a randomly generated velocity variation. The
time increment At is 0.05 units of time.

Three algorithms are implemented:

e DAA: the algorithm discussed in this paper, without a
speed bound,

e full-DAA: the complete calculation of T and total sort
for all pairs,

e full-DF: the complete computation of the distance and
total sort for all pairs.

The task of DAA and full-DAA is to report the pair of dots
that have the smallest value of T . The task for full-DF is to
report the closest pair of dots. The first element of A(t ,) of
each algorithm is used to compare them. At each sample,
the three algorithms agree if they all give the same most
imminent possible collision (pair) in the world. The results
for this particular simulation are shown in figure 4 and are
summarized in the following:

number of iterations: 20, number of objects: 3,

e (1) DAA and full-DAA agree on: 20,

e (2) DAA and full-DF agree on: 15,

e (3) full-DAA and full-DF agree on: 15.

Result (1) shows how DAA keeps track of the evolving
world; i.e., the partial update is sufficient to do the same
job as the complete update. Result (2) shows the difference
between DAA and full-DF. In general, the algorithms will
not agree if the closest objects are not going towards each
other. If DAA cannot keep track of the changes, the difference
between the measure T and full-DF is seen in result (3).

The most interesting situation is when DAA and full-DF
do not agree. Such a case arises in samples 1 to 5 (see fig-
ure 4). For example, the numerical values for sample 2 are:

e DAA says that the most imminent possible collision is
between 01 and 0 2 , where:

- pos. 01 is (-0.5,2.1), vel. O1 is (-0.9, -2.4),

- pos. 0 2 is (-0.6,0.4), vel. O2 is (-0 .5 , - l . l) ,

- distance 1.76, T is 0.95.

e Fu~I-DF says that the most imminent possible collsion
is between 01 and 0 3 , where:

- pos. 01 is (-0.5,2.1), vel. O1 is (-0.9, -2.4),

- pos. 0 3 is (0.5,2.9), vel. O3 is (1.7, -0.6),

- distance 1.3, T is 3.1.

Obviously, this means that the velocities of 01 and 0 2

After running the algorithms several times some interest-
can create a conflict that is not suspected by DF.

ing tendencies emerge:

e The measure T throws into relief the objects which are
converging. This confirms our initial intuition.

e Objects with high velocities are marked as more “dan-
They are the gerous”; i.e., the value of T is small.

troublemakers.

8 Conclusions
In this paper we considered a supplement to the classical dis-
tance function DF: the dynamic awareness algorithm DAA.
When dealing with dynamic worlds, DAA takes into account
the dynamic aspect of an environment and predicts all pos-
sible collisions. Like DF, DAA can be used as a base for
numerous schemes in path planning, collision avoidance, etc.

Rather than looking at a specific trajectory, DAA picks
the worst-case trajectory by considering T , the shortest pos-
sible time before a collision. The algorithm has a good per-
formance because, using T , it maintains the most probable
future interaction in the environment at the top of a stack.
Hence, the more information available to compute T the bet-
ter the predictions.

The naive method of complete re-classification at each
time sample has a complexity of O (N 2) per time sample. In
contrast, DAA has an initial classification step of complexity

342

O(N’) and a steady state complexity of O(1og Nloglog N)
per time sample.

Completeness for the algorithm is defined with respect
to its capacity of reporting all possible collisions. DAA is
complete in the sense that it can report all failures to keep
track of potential collisions.

The Dynamic Awareness Algorithm is general, and one
can think of numerous possible variations:

Serial computing: With serial computers, one can eas-
ily see that buckets can be assigned to memories of
increasing capacity and decreasing access speed. The
pair sampling algorithm bears comparison with the
type of scheduling algorithm used in time-sharing op-
erating systems.

Parallel computing: Parallel computing could be achie-
ved by assigning a computing unit to each bucket, or
by assigning a computing unit to each pair. Note that
no scheduling scheme is necessary in the latter case.

Partioning: As mentioned in section 4 the buckets’ size
can follow various laws, Fibonacci series, for example.
Hopefully, the priority distribution of the interacting
objects in the environment is exponentially decreasing,
which implies that we assume that not many simulta-
neous important interactions take place. The parti-
tioning strategy could require to be tuned according
to applications.

Information on objects: The more available informa-
tion, the better the prediction measure r is. DAA can
use various relations to sort the pairs and improve pre-
dictions. Furthermore, to get in due time the infor-
mation on the most important interacting pairs in the
world, DAA can be connected to a perceptual mecha-
nism to shift the focus of attention to the important
features .

The flexibility of the algorithm comes from the fact that
we separated the problem of dealing with dynamical worlds
into two sub-problems: classifying the pairs using the aware-
ness measure r and scheduling the pair updates using bucket
partitioning.

An example of its use in robotics is in real-time collision
avoidance for redundant manipulators [12] where DAA would
replace the distance function used to evaluate the closest
object to the robot.

9 Acknowledgments
Work described in this paper has been supported in part
by a research contract with Spar Aerospace Ltd., Toronto,
Canada, by a grant from NSERC (Natural Sciences and Engi-
neering Research Council of Canada), and Fonds FCAR (For-
mation des Chercheurs et 1’Aide 8. la Recherche, QuCbec).

References
[l] Aho, A.V., Hopcroft, J.E., & Ullman J.D. (1982), Data

structures and algorithms, Reading, MA, Addison-
Wesley.

[2] Ahuja, N., Chien, R.T., Yen, R., & Birdwell, N. (1980),
Interference Dectection and Collision Avoidance among
Three Dimensional Objects, First Ann. Nat. Conf. on
AI, Stanford, pp. 44-48.

[3] Boyse, J. W. (1979), Interference Detection among
Solids and Surfaces, Communications of the ACM, vol.
22, pp. 3-9.

[4] Buckley, C.E., (1989), A Foundation for the “Flexible-
Trajectory” Approach to Numeric Path Planning, Int.
Journal of Robotics Research, vol. 8, no. 3, pp. 44-64.

[5] Cameron, S., (1985), A Study of the Clash Detection
Problem in Robotics, IEEE Int. Conf. on Robotics and
Automation, St-Louis, pp. 488-493.

[6] Canny, J., (1986), Collision Detection for Moving Poly-
hedra, IEEE PAMI, vol. 8, no. 2, pp. 200-209.

[7] Faverjon, B., Tournassoud, P., (December 1988), A
Practical Approach to Motion-Planning for a Manip-
ulator wit6 Many Degrees of Freedom, INRIA, Rapport
de Recherche 951.

[8] Gilbert, E.G. and Johnson, D.W., (1985), Distance
Functions and their Application to Robot Path Plan-
ning in the Presence of Obstacles, IEEE J. of Robotics
and Automation, vol. 1, no. 1.

[SI Hayward, V., (1986), Fast Collision Detection Scheme
by Recursive Decomposition of a Manipulator Work-
space, IEEE &. Conf. on Robotics and Automation,
San-Francisco, pp. 1044-1049,

[lo] Kant, K., Zucker, S. W., (Fall 1986), Toward Efficient
Trajectory Planning: The Path-Velocity Decomposi-
tion, The International Journal of Robotics Research,
vol. 4, no. 3, pp. 72-89.

[l l] Khatib, 0. (1986), Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots. The Int. J. Robotics
Res., Vol. (5)1, pp. 90-98.

[12] Maciejewski, A.A. and Klein, C.A., (Fall 1985), Obsta-
cle Avoidance for Kinematically Redundant Manipula-
tors in Dynamically Varying Environments, The Inter-
national Journal of Robotics Research, vol. 4, no. 3, pp.
109-1 17.

343

