IEEE International Workshop on Intelligent Robots and Systems

IROS ’90

The Evolutionary Design of MCPL

V. Hayward, L. K. Daneshmend,
A. Foisy, M. Boyer, L.P. Demers,

McGill Research Center for Intelligent Machines
McGill University, Montréal, Quebec Canada H3A 3A7

Abstract: The remote manipulator system designed
by the acronym MsS, which Canada is contributing to the
International Space Station, is briefly described. The un-
derlying structure of Mss is analyzed in terms_of a collection
of hierarchies. Control language design issues are then ana-
lyzed and an object-oriented methodology is proposed with
a view to define a run-time structure in relation with task
planning requirements.

Key words: Robotics, Remote Manipulation, Space Explo-
ration, Robot programming, Object-oriented software.

1 Introduction

The Mss acronym designates the remote manipulator sys-.
tem which Canada is contributing to perform congtruétion,
servicing and maintenance functions on the projected In-
ternational Space Station.

Extra-vehicular Activity Worksation
Mobile Transporter

(3] Mobile Servicing Center Base Structure
(4] Television Cameras

the MSS Command and Programming Language

R. Ravindran, T. Ng

Spar Aerospace Limited, Remote Manipulator Systems
1700 Ormond Drive, Weston, Ontario Canada M9L 2W7

A language called McPL (Mss Command and Program-
ming Language) is being designed to enable advanced op-
erator and computer control of MSS in a variety of tasks.
The design strategy is based on an evolutionary develop-
ment since the MSS is a long lived project of the order of
thirty years, spanning multiple steps of enhancement.

The requirements for the space operation of manipula-
tors are quite peculiar since the manipulators are meant to
operate under extreme conditions in addition to stringent
reliability requirements. The complexity of space opera-
tions require a degree of versatility rarely encountered in
known robotic systems.

Canada has acquired a unique expertise for the develop-
ment of such manipulators since Spar Aerospace Ltd. has
designed and built the Canadarm, the Space Shuttle Re-
mote Manipulator System.

Space Station Remote Manipulator System
E Arm Electronics

Special Purpose Dextrous Manipulator

|8] Universal Service Tool

Figure 1: Mobile Servicing Center

— 413 -

2 A Short Description of MSS

Mss stands for “Mobile Servicing System”. It involves a
collection devices, the most notable of which are: (1) Slave
clements: Power Management, Computing Resources, etc.;
(2) Passive clements: maintenance depot, tool rack, etc.; (3)
Manipulator and attachements space station manipulator,
two special purpose dextrous manipulators, eflectors; (4)
Person-Machine Interfaces: IVA control station, EVA work-
station, etc...

Mss on-orbit requirements describe what is convention-
ally called a “telerobot”, that is a manipulation system
which is capable of functioning under human operator su-
pervision, autonomous control, or in shared mode.

Froin the manipulation view-point, MSS is composed of
two main elements. The SSRMS or “Space Station Remote
Manipulator System” is a large seven degrees of [reedom
manipulator meant to provide a large load handling capac-
ity and considerable reach. The SSRMS is equipped at both
ends with a latching end-effector designed to mate with

Power Data Grapple Fixture
Lower Body Yaw and Body Joints
TV Camera

Latching End Effector
Lower Body Electronic Boxes
Upper Body Electronic Boxes
Upper Body Tools
Shoulder Roll Yaw and Pitch Joints
Stereo Camera and Light

(o]e]~]=le =]]e]=]

grapple fixtures situated at all relevant places of the Mss
and the Space Station structure (sce figure 1). The SSRMS
is normally aflixed to the “Mobile Servicing Center”, itself
attached to a mobile transporter that can travel along the
Space Station structure.

The sPpM (sce figure 2) is primarily intended to be op-
crated from the end of the sSRMS. It can also be operated
through its latching end cffector from any of the grapple fix-
tures located on the MSc, the MSC “Maintenance Depot™.
or on the Space Station truss.

The reader is referred to [5] for additional details on the
design of the system.

3 Structures

A robotic system such as MSS can be better described fron:
various perspectives, each leading to a different hicrarchy
{3]. This decomposition should form the basis of the de-
sign of the Janguage mecant to control such a system. Since
a language is defined by its syntax and its semantics, we
found appropriate to be concerned in a first step by its
semantics rather than by its syntax. Thus, our study pro-
vides a conceptual architecture concerned with procedures
involving eflectors, sensors, and multi-level plan interpre-

Elbow Ditch Joint

Lower Arm

Upper Arm

Wrist Pitch Yaw and Roll Joir::
Force Moment Sensor

Special Tool

TV Camera

Upper/Lower Body Pitch Join:

Figure 2: Special Purpose Dexterous Manipulator

— 414 -

-

tation. Ilowever, the actual form of the commands, which
is a person-machine communication issue, is not discussed
because it falls outside the scope of this paper.

The decomposition that we suggest here is by no means
unique and may vary from one telerobotic system to an-
other. We believe however that the multiplicity of hier-
archies is a property shared by most complex telerobotic
systems which is vividly illustrated by the Mss project. Let
us discuss some of these proposed hierarchies.

3.1 Activity Sites

All telerobotic systems are in essence distributed systems,
in the physical sense and in the computational sense. Of
course MSS is no exception. At least three physical sites
may be distinguished in terms of activity.

The local site, situated on earth, in a laboratory envi-
ronment, may possess facilities which are limited only by
available technology. It may include computer based sim-
ulators as well as physical mock-ups of the remote site, as
it is often the case in space exploration. This site may
be equipped with powerful person machine igterfaces offer-
ing any required modality: graphic, kinesthetic, linguistic
(written and speech), and so-on.

The operator site is located near the operational site,
often within the direct visual range of a human operator.
In the case of MsS, this site may be situated either within
pressurized head-quarters (Intra Vehicular Activity or IVA)
or at the base of the manipulation system (Extra Vehicular
Activity or EVA). The requirements imposed by the envi-
ronmental conditions restrict considerably the range of pos-
sible person-machine interface modalities. This site might
be defined by the physical reach of a human operator during
normal operation. .

The remote site is defined by the manipulation system
and where it can reach. As described above, it comprises
the SSHMS (mair manipulator) and two SPDM’s or dextrous
manipulators and their working envelop.

Clearly, these sites form a hierarchy of decreasing rich-
ness of capabilities.

3.2 Computational Sites

Distributed computations are required over the entire sys-
tem. On the local site, computational and storage capa-
bilities can be as large as required. On the operator site,
power and space limitation put severe constraints on the
computational and storage capacities.

Each site forms a computational node of limited ca-
pacity. Each of these nodes are linked by communication
channels which also are limited in capacity and speed. For
example the earth-station link causes inherent communi-
cation delays and has a limited bandwidth. On the space
station, communication delays can be made much shorter

_and bandwidth higher. At the remote site, in the manipu-
lator system itself, communication delays have lo be made
very short due to the necessity to perform feed-back con-

trol. Thus, we can observe a computational hierarchy with
nodes of decreasing computational power, and channels of
increasing rates, and decreasing communication delays. In
the details, the computing hierarchy is more complex than
the one just outlined.

3.3 Sensing

There is clearly a physical layer. In the case of sensors it
can be called the instrumentation layer. In some case, sen-
sor datagcan be utilized almost directly, for example, in a
tracking task. Most often, raw data will require some kind
of filtering, but still will represent the sensed variables. Fil-
tering only requires knowledge about the signal itsell. One
level up, data nceds to be aggregated, possibly (rom differ-
ent sources or through time, in order to construct models.
Aggregation require knowledge about the properties of Lhe
sensor. Finally, aggregated data will require interpretation,
that is, one will have to account for the nature of what
is being sensed in order to derive the require information.
Interpretation also requires knowledge about properties of
what is being sensed.

In short, there are apparently four layers of sensing hier-
archy, which will not necessarily match layers of the others
hierarchies. This sensor organization must be apparent in
the data-base that ‘specifies available sensing capabilities
(figure 3). The information follows an ascending pathway.
There are of course many issues not mentioned in such a
short account of the sensing process. However, this simpli-
fied picture should suffice for the discussion at hand.

Interpretation Layer Knowledge about the world
_Aggregation Layer Knowledge about sensors
Filtering Layer Knowledge about the signal

Instrumentation Layer | Knowledge about Physics

Figure 3: Sensing Layers

3.4 Commands

This hierarchy is the most often discussed. It relies on the
assumption that any command (descending signal) can be
decomposed into other commands, hopefully simpler and
concerning lower levels of abstraction. A command is nor-
mally specified in terms of constraints (arguments) applied
to a labeled method (algorithm).

A five layer functional hierarchy has been suggested by
space operation specialists. For example, the top layer, or

function layer, corresponds to types of missions: Space-Statiol
Assembly, Transportation, Pay-load Handling, Pay-loa

Servicing, Space-Station Maintenance, EVA Support,
Safe-haven Support. The next layer encompasses opera-

tions. For example: Assembly of Modules in Space-Station
Assembly, Fuel Tanks in the Transportation Function,
Clean Windows in the Maintenance Function, and so-on.

— 416 -

The next layer is the activity layer, for example, Track and
Capture the Orbiter in a Berthing Operation. The next
layer is a task layer, for example, Capture the Orbiter for
the activity just mentioned. Finally a sub-task layer deals
with the effector and arm control. TFor example, Move to
Location, Latch, and so-on.

In a robotic system such as the Mss, the botlom lay-
ers may correspond to robot programs which encapsulate
basic operations in terms of strings of gross motions, and
sensor-based fine motions sequences (guarded and compli-
ant) together with the operation of end-effector and periph-
eral equipment [4]. The next Jayer will be concerned with
trajectories, for which the mechanical system is abstracted
in terms of points in velocity/force space. Finally, the low-
est layer will consist of dynamic control algorithms applied
to explicit sct-points, whether they concern the motion of
manipulators, end-effectors, or peripheral equipment.

A tentative run time structure on which this command
hicrarchy could be mapped is presented in a subsequent
section, while levels of abstraction are depicted below.

Al Planner | Predicates and Logic

Strategy Skeletons

Actions State changes relevant to the plan
Motions End point motions. lloming, tracking
Control Tool velocity and force

Joints Angles and torques

Figure 4: Possible Command Hierarchy

3.5 Motion Planning Hierarchy

Motion planning can be viewed as a process occurring be-
tween the task planning process and the servo-control pro-
cess. The role of motion planning is to satisfy a sct of con-
straints dictated by the manipulator itself (its work enve-
Jope, kinematic and dynamic properties, and possibly other
considerations such as deflection), the task (nominal tra-
jectories must converge toward a goal state under model
uncertainty), the environment (motions must only generate
wanted collisions with controlled force), and design param-
clers such as energy or joint travel minimization.

Many of the motion planning techniques require exten-
sive computations. In consequence, the very first stages of
task planning consist of deciding how much motion plan-
ning must be done ofl-site, at task preparation time, and
how much can be done on-site. On-site planning leads to a
larger amount of flexibility and adaptation from Lhe system.
In the “programming by showing” systems, all Lrajectories
are stored in a fixed manner. In sensor-based motions, ref-
erence coordinates and target positions can be determined
at run time. The dynamics of a manipulator can be uti-
lized on-line to set bounds on accelerations. However, in
sensor-hased motions, one must insure that the resulting
trajectories are collision-free. This check cannot of course

be performed off-line. Thus, it is a desirable goal lo in-
clude that capability at rmn-time since it would increase
the adaptivity of the system to new situations.

There also exist a classification in the nature of motions.
Gross motions are utilized to move manipulator and loads
over large distances. In this case, the principal constraint
imposed onto the motion is avoidance of collisions. In the
case of docking, for example, there exist additional con-
straints such as following a well dcfined path in Cartlesian
space. I'inec motions will be used to reduce the discrepancy
between expected model-based trajectories and actual tra-
jectories constrained either by physical contact or proximity
sensing.

3.6 Physical Hierarchy

The structure of the MSS project suggests a licrarchy in
the very mechanical design of the system. Whenever the
transporter moves, the cntire system moves. Consequently,
transportet motions are, from a geometrical point of view,
affecting all parts of the system. The same can be said [rom
the ssrMS, from the body supporting the sppM's, dock-
ing module, etc... However and fortunately, structural con-
straints forbid arbitrary combinations of motions to occur.

The very physical structure of the system also suggest
several hierarchies in terms of reach, load capacity and dex-
terity.

3.7 Granularity of Description

There also exists a hierarchy in the abstractions and mod-
els used to describe the system. At the highest level, the
system and its task can be described in terms of formal
logic, once hardware details are abstracted. The language
implementor has to choose the level of abstraction or grain
size at which such a description is appropriate. Although
in theory, mathematical logic is the only tool required to
describe any kind of system, in practice, one musl decide
when this approach becomes appropriate. At a less high
level of abstraction, it might be useful to describe the sys-
tem in terms of automata. In other words, the system
is described in terms of state changes. Some formalisims
such as Petri Nets have been proposed to express concur-
rency. At an even lower level, the system can be described
in terms of processes. Processes have a finite life time
and explicitly deal with the notion of time, hence the im-
portance of synchronization mechanisms. At a less high
level, descriptions are made in terms of continuous fnctions
(i.e. kinematics) and continuous feed-back control. But
again, strict hierarchical order is hard to enforce. Tor ex-
ample, a single plan might involve continuous notion such as
“Track(Surface)” or discontinuous ones such as the pred-
icate “Collision-Free(Trajectory, Environment)”.

— 416 -

3.8 Rates

The rate of flow of information is an important criterion of
classification.

The rate hierarchy will be determined by the capacity
and delay of the various communication channels. It is par-
ticularly important to quantify these parameters because
they determine the nature and the usefulness of the possible
intervention of the human operator. For example, because
of transmission delays, kinesthetic coupling will be avoided
between the ground site and the operation site. Clearly, the
various control layers operate at various rates and so do the
sensory layers. Rate compatibility must be enforced.

Transmission delays can be overcome in certain cases
using preview control in the case of autonomous control,
using predictive displays in case of teleoperation.

The hierarchy has been placed last in our discussion
because we now suggest the reader to mentally perform a
mapping of the rate hierarchy onto each of the others de-
scribed before. Thus, it is easy to begome convinced of the
irregular and possibly time and task-varying nature of the
underlying structure of the system, Of course, this exercise
ought to be performed with all possible combinations to get
a feel of the complexity of the problem.

4 Run Time C.

The run time structure should account for the existence of
multiple hierarchies in a robotic system such as the Mss. In
a first step, we have suggested a run-time hierarchy made of
the following triplet: verification, execution, and observa-
tion (VEO) as a basic building block. Refer % the following
subsections for a short description of each component of
the triplet. This run-time hierarchy will be composed of n
levels and level 0 will be known as the physical level. It is
at the physical level, which corresponds to the instrumen-
tation layer, that actions are physically performed and that
the sensors interact with the world. At the top level, a high
level plan is given and that plan is refined in the subsequent
levels until the physical level is reached.

At any given level, a plan is verified and the execution of
the plan is carried out. The result of the execulion returns
information which is aggregated in observations. The first
level of information’ comes from the sensors. For other levels
observations come from aggregation of other observations.

At any given level, the VEO triplet is autonomous which
gives a good abstraction by restricting the exchange be-
tween levels only through the execution/verification inter-
face. Furthermore, execution of actions goes from the top
level to the physical level and the aggregation of informa-
tion flows from the physical level to the top level. This flow
of information resembles the NASREM model [6}.

h

PLAN

\'\x

:Si‘él% 'uuu-nn Level 2

‘\

\

RN /
¥ e 1 wnees | SENSING Level t
(\40 Oﬂj\ G(NS NG) ACT!ONj\‘ @

Physical

¥
(A('HON)..(sénsing) tacnou " SENSING ‘ Level ©

Figure 5: Structural hierarchy of system: The heavy line
is a frontier between levels, the groupings emphasize the
interface between levels.

4.1 Verifying

Plans are givens to the system and are provided to each level
of the run-time structure. A step of the plan will be checked
using available information about the current context, and
actions will be executed. A plan step will give rise to an
outcome which is a context change or side effect. This leads
to the expansion of a plan step into actions. Each action
of the current level represents a plan at the following level,
which gives rise to a recursive definition of the interpreter.

The actual outcome is sensed and checked against the
expected outcome. The method has to make the decision
whether the current plan needs correction at the current
level of interpretation (i.e. compare sensed variables against

thresholds).

4.2 Executing

Execution of actions results from the interpretation of a
plan. We must distinguish between two kinds of actions:
real actions and virtual actions. Real actions are those that
take place at the physical level. These are the outcome of
the upper levels. Virtual actions are those generated by the
interpretation of the plan at different levels other than the
physical level.

4.3 Observing

Observations originate from the aggregation of information
coming from other observations or coming from the sen-
sors. Observations are fed back in the checking of the plan
to help verify the outcome of the actions or simply satisfy
other preconditions that will produce other actions, Notice
that aggregation of information implies that forms of sensor
fusion may be central to the system.

— 417 —

4.4 Exception and Sensing

The decision mechanism handling the outcome of aclions
might be thought of as an exception mechanism. Accord-
ing to the outcome of each action, three cases must be en-
visaged. Either the outcome is within expected bound and
the plan may be carried out without further processing, ei-
ther the outcome requires a modification of the next step
or the choice of another control thread of the same plan (an
error), or the outcoine requires the abandon of the current
plan and control is transferred at a higher hicrarchical level.
For example consider the case of a guarded motion. Either
the sensor predicate does not indicate the presence of an
obstacle and motion continues, either the sensor predicate
indicates the presence of an obstacle and a different move
command must be issued. Finally, if the sensor predicate
does not indicate the presence of an obstacle and the robot
is driven into a singular or joint limit configuration, then
the current plan must be abandoned and failure reported
at a higher level. It is really an exceptional casc since a
higher plan level should have made sure that the obstacle
was indecd rcachable.

The handling of these situations can be analyzced in some
cases but this remains a difficult problem in general. We
suggest the reader to refer to [1] for a more thorough dis-
cussion of this topic.

5 Language Issues

In a robotic context, a language serves three purposes: (1)
Express the task that the robot is to perform at onc or
several levels of abstraction; (2) Implement some or all of
the control algorithms, including representations attendant
to the task, the robol, and the environment; (3) serve as
a medium of communication between a user/opcrator and
the machine. Clear design advantages can be drawn from
using a single language to fulfill all these requirements.

The hierarchy of commands has to execute on a physical
and computational structure, consequently, a mapping is
established between the command or operational hicrarchy
and the functional hierarchies which describes the structure
of the system. We call this process a binding process.

If the functional hierarchy can directly execute the ab-
stract task description, this binding step may be omitted
and everything is interpreted. This is usually the case in
“industrial robotics.” Most of the binding is decided at
factory design time. Machines and robots are assigned very
small and fragmented tasks. In thal case planning is re-
duced to scheduling. Furthermore, the factory design cn-
forces matching between levels of abstraction and functional
layers. This is in fact the case in many large scale techno-
logical systems which all attempt to enforce a hicrarchical
structure. For example, power distribution networks are
designed in such a way that local failures do not disturb
the function of the whole: normally a short-circuit in one
house docs not affect the neighboring one: local re-planning
is casy.

Robot control systems can be molded into the hicrar-
chical framework if the variability of tasks to he performed
is small. Unfortunately, in applications such as space au-
tomation, the considered class of tasks is very broad. The
task itsell is what is controlled, leading to a great deal of
variability. For each task, we obtain a different physical
system, thus potentially different levels to describe it.

If the binding is performed at run time within levels,
we obtain a more complex but more versatile system. This
is the case when the execution Finally if the cntire bind-
ing is done at run time, we obtain a very complex system,
but immeasurably more versatile (probably what biological
systems do).

The type of plan interpreter proposed here is indeed a
very simple one because each plan step is only mace of pos-
sibly conditional actions, which in turn may be considered
as plans. The only cscape mechanism being the handling
of exceptions.

One extra step in generality would involve a plan inter-
preter which would dynamically bind actions to plan steps
according to the context. For example, if a plan step in-
volves unfastening the panel of an ORU to be scrviced, the
initial plan may not specify which one of the two spdm’s
would be allocated to execute this plan step. The deci-
sion can be made at run time according to the context.
Of course, such a strategy places much heavier capability
requirements on the task interpreter. We feel that such dy-
namic binding should be limited to well suited cases but
must be accounted for.

6 Discussion

As just discussed, supervised/autonomous robotic systems
may be characterized by software environments which are
very large, long lived, have functional requirements which
may evolve, and which deal with a large number of me-
chanical and computer subsystems, which are distributed
physically, which function in parallel temporally, and may
also evolve.

There is no inherent reason why a complex robotic sys-
tem should prove itself amenable to imposition of a rigid
taxonomy upon its structure. Rather, it is the design pro-
cess itself which imposes order upon the system, such that
the structure can remain invariant throughout various task
exccutions or operations.

Strictly hierarchical designs of robotic systems, which
rigidly enforce simple inheritance, have been notoriously
unsuccessful in the past. Since the operation ol such a sys-
tem may be viewed from so many diflering perspectives,
simplc inheritance is much too restrictive a representation
tool.

We have proposed to basc MCPL, on an object-oriented
paradigm for the implementation of the run-time structure
and of the databases that support it. This section will mo-
tivate the use of object-oriented systems, prescul a brief
analysis of them, their relevance to telerobotics in gencral,
and to the MCPL project in particular.

— 418 —

We would like to put forward the following motivations:
In the development of a software project the design phase
results in a description that must be easily implemented,
provides all required functions, and easily maintained. Go-
ing to the implementation phase all the decisions should
have been made. The job is now to take the detailed design
and transform it into code, and check if the code implements
the design.

The values of object-oriented “programming” are that
it touches both the design and implementation phases. In
fact, it tends to blur the distinction between the two phases.
This means that you can write a skeleton of the system by
identifying the relationships between objects and then flesh
out their functionality. This gives rise to early prototypes
since it is all done with the same programming environment:
the object-oriented one.

A more concrete grasp of the object-oriented paradigm
can be gained by viewing it as a means of achieving modular
software resource management. Classes and objects are the
modular building blocks. Inheritance allows classes to spec-
ified in a modular, incremental, manner. Since objects are
first-class computational values, i.e. they may be assigned
as values of variables or passed as parameters, they can be
managed directly by computation within the language.

From a practical point of view, classification is an as-
set to software management because it allows objects to be
managed from within the language, in the same manner
as data. Classless languages (e.g. Ada) rely upon special
purpose language facilities to handle module management,
e.g. library facilities. Module management may be trivial
for a software system with less than a 100 modules, but be-
comes critical as the number of modules and modyle types
increases. Inheritance provides a means for specilying rela-
tions between classes of objects from within the language,
and hence allows evolution of the system over time.

Thus, from a software engineering perspective, the objet-
oriented paradigm appears suited to the programming of
very large, long-lived, software systems. It must be remem-
bered however, that the-object-oriented approach also im-
poses certain additional responsibilities on the designers of
a software system, in the form of very fundamental and
crucial design decisions. The selection of classes, objects,
and their interfaces, ultimately impacts all aspects of the
performance of an object-oriented system, and is inherently
application-dependent.

It appears intuitively obvious that typed (classified) uni-
verses of discourse are more expressive than untyped uni-
verses. The introduction of classes may be viewed as a
means of filtering unstructured information. It carries with
it the responsibility of choosing the appropriate level of ab-
straction and interpretation, if the objective of reducing
complexity is to be achieved. -

A hierarchical structure can be achieved il first-order
classification of data is extended to second-order classifi-
cation of classes. Hierarchies enable the sharing of prop-
erties of “ancestors” by “descendants”, i.e. inleritance.

Implementation hierarchies are concerned with incremen-
tal evolution of properties of classes over time, i.e. with the
implementation of objects, and hence are relevant to pro-
gram development. Specification hierarchies arc concerned
with relations between classes, in terms of abstract inter-
face specifications, and hence are relevant to system design.
Multiple inheritance enables a class to be viewed from a
number of different hierarchical perspectives.

I classification is to be utilized constructively as a means
of structuring information, an appropriate set of criteria for
cla.ssiﬁc;tion, i.e. a taxonomy, is essential. The taxonomy
employed must be selected prior to the classification phase,
and hence impacts the resulting hierarchies.

Another critical aspect of the Mss software environ-
ment will be its physically distributed nature. The object-
oriented approach is an aid in promoting the modularity,
via objects and message passing, required for distributed
systems implementation. However, communication band-
width between distributed components is a practical con-
straint which must be taken into account in the taxonomy
of the object-oriented solution. In addition, inheritance
requires the dynamic sharing of code: although this may
be circumvented by replicating code in different distributed
components, replication partially defeats the advantages of
sharing and inheritance.

7 Conclusion

Software design of the programming/planning and task ex-
ecution of a advanced robot system task may be viewed as
a problem of defining two taxonomies and the relationships
between them. Upon closer investigation of the problem,
the requirements of this design problem are seen to be five-
fold:

o Design of a Task Planning taxonomy

o Design of a Task Execution taxonomy

¢ Mapping of the robot task to the planning taxonomy
® Mapping of the robot task to the execution taxonomy
e Linking the planning and execution paradigms.

The requirements for these two taxonomies are, lo a large
extent, conflicting. Task planning requires an operational
taxonomy, in which the actions to be performed are classi-
fied. Classification of actions is beneficial in planning since
it leads to pruning of the set of operators to be considered
in constructing a plan, and facilitates the construction of
generic exception handling operations [1].

In contrast, the run-time environment for task execution
benefits from the imposition of a functional taxonomy, in
which the physical objects to be operated upon are classi-
fied. Functional classification provides the benefits of mod-
ular development for large, long-lived, software systems.

— 419 -

The hierarchical object-oriented design paradigm sup-
ports a taxonomy of objects (i.e. a functional taxonomy),
but not does not cater for a taxonomy of the operations
which act upon those objects. We have extendeod the hier-
archical object-oriented paradigm by specifying that: oper-
ations on objects have an associated data type and that op-
eration types inherit attributes from operation supertypes.
We arrive at the Dual-Hierarchical Object-Oriented Design
(p1100D) paradigm. This novel technique is described in a
recent publication (2],

References

(1] Boyer, M., A Knowledge-Based System for On-line
Robot Error Recovery, M.Eng. Thesis, Department of
Electrical Engineering, McGill University, July 1988.

2

Boyer, M. Daneshmend, L. K., Hayward, V., Foisy, A.
Object-oriented planning, programming, and execu-
tion of robot tasks. Submitted to OOPSLA 1990.

[3] NMayward, V. 1988. Autonomous control issues in a
telerobot. IEEE Conference on systems man and cy-
bernetics. Workshop on Manipulators in Space. Bei-
jing, China. pp. 122-125.

[4] Hayward, V., Daneshmend, L. K., Hayati, S. 1989. An
overview of Kali: a system to program and control
cooperative manipulators. [ourth International Con-
ference on Advanced Robotics. Springer Verlag, pp.
547-558.

Iunter, David G. 1988. An Overview of the Space Sta-
tion Special Purpose Dextrous Manipulator (SPDM).
Canadian Space Agency Technical Report, NRCC No.
28817.

=

[6] Oberright, J., McCain, H., Withman, R.I. 1987. Space
station flight telerobotic servicer functional require-
ments developments. Proceedings of SPIE, Space Sta-
tion Automation. Vol. 1II. Cambridge, Ma. pp. 169-

172.

= 420 —

