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Abstract

The presliding displacement and stiction properties
of friction models are investigated. It is found that ex-
isting single-state-variable friction models possess either
stiction or presliding displacement. Next, those models
with continuous states are interpreted as examples of
Prandlt’s elasto-plastic material model. A class of gen-
eral one-state models is derived that is stable, dissipative
and exhibits both stiction and presliding displacement.

1 Introduction

The question of appropriate friction models has been
raised many times; a survey cites 280 articles addressing
issues of friction modeling, control and applications
[2]. Some of the models most often used are the
Coulomb+viscous friction model, and the Karnopp
and LuGre models, which provide alternative tradeoffs
amongst the desirable characteristics of a friction model.
Here we show that existing models are unable torender
both presliding displacement and stiction, and present
an enhancement which is able to capture the advantages
of existing models while providing a faithful rendering
of stiction.

1.1 Friction Dynamics

Restricting attention to friction in machines (dominated
by lubricated metal contacts) the frictional dynamics
include Coulomb-+viscous friction, static friction, the
Stribeck velocity-friction curve, frictional memory and
rising static friction [2].

1.1.1 Coulomb-Plus-Viscous Friction

The Coulomb-+viscous friction model is commonly used
because of its simplicity, and may be written:

Je = fo sgn(v) + v, (1)

where f is the friction force, v the relative velocity of two
bodies in contact, fo the Coulomb friction level, and §,
the coefficient of dynamic friction. The model is not well
suited for implementation because of the discontinuous
sgn(-) function. The discontinuity can be addressed by
modeling presliding displacement [4].
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1.1.2 Presliding Displacement and Stiction

When a frictional contact is in static friction there may
none the less be relative motion. This arises with
tangential compliance and, because there is no true
sliding, is called presliding displacement. A friction
model renders presliding displacement if variations in
applied force below the breakaway force produce elastic
deformation and movement. A friction model renders
static friction, or stiction, if, for applied forces smaller
than a breakaway force, there is no steady-state relative
motion.

Dahl introduced presliding displacement into fric-
tion modeling by incorporating tangential compliance
[6]. The LuGre friction model [5] is an extension
of Dahl’s model, the LuGre model can represent:
Coulomb+-viscous friction, Stribeck friction curve, fric-
tional memory, and rising static friction. The LuGre
model may be written:

fi=00z+012+02v, o0;>0. (2)

where z represents the state of strain in the frictional
contact, and o¢ and o3 are Coulomb and viscous friction
parameters; and o, provides damping for the tangential
compliance. The signal 2(t) is governed by:

a

Z=v (1 - ?s-sTOUS sgn(v) z) , (3)

where fis(v) represents the Stribeck curve, or steady-
state friction-velocity curve.

Through presliding displacement, some motion is
possible even when a mechanism is stuck in static
friction [3], so a careful definition of static friction is
required. A formal definition will be presented in section
2, here we informally consider that a friction model
possesses a true stiction phase if there exists a breakaway
force f,, such that, for any friction force f(t) that
satisfies:

[fe(t)] < foay —00 <t < 1y (4)

then all motions correspond to elastic deformation and
are reversible. When the applied force is restored to
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its initial value, the position comes, after a possible
transient of presliding displacement, to its initial value.

As seen in Table 1, models in common use render sev-
eral combinations of presliding displacement and stic-
tion. The classic Coulomb friction model, like the
Karnopp model, renders stiction but makes no refer-
ence to presliding displacement. Because of challenges
posed by the discontinuity at zero velocity, the Coulomb
friction model is sometimes regularized {12], leading to
a model rendering neither presliding displacement nor
stiction. The LuGre model renders presliding displace-
ment but not stiction; and the Elasto-Plastic model, in-
troduced here, renders both presliding displacement and
stiction.

.. Preslidin
Stiction Displacelient
Classic Coulomb and Yes No
Karnopp Models
Regularized Coulomb No No
LuGre Model No Yes
Elasto-Plastic Model Yes Yes

Table 1: Comparison of four models of friction
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Figure 1: Simple mechanism simulated using four

friction models.

To illustrate the four cases of presliding displacement
and stiction, four simulations are presented in Figure
3. These simulations were the done with the simple
mechanism illustrated in Figure 1 and with the applied
force shown in Figure 2. The simulated models are:

1. Coulomb friction, regularized by smoothing the
discontinuity at zero velocity (following [12]):

fi = fo tanh( :—0) (5)

with m = 1.0 [kg], &£ = 1.0 [N], and vy = 0.01
[m/s].

2. The Karnopp friction model {11], which introduces
a band around £ = 0 where stiction is directly
enforced by setting the velocity state to zero. Dp =
0.01 [m/s] (see [11] for details).

3. The LuGre friction model [5], given by Eqn’s (2)
and (3); with parameters og = 100, o, = 2.0 and
o2 = 0; and the Stribeck friction curve given by:

£s() = fo + (oa — fo)e™(¥/v)’ (6)
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where f,» = 1.1 [N] is the breakaway force and
vs = 0.1 [m/s] is the characteristic velocity of the
Stribeck curve [2].

4. The ‘Elasto-Plastic’ model, given by Eqn (2) and
with Z given by

Jo

o .
—2 _>0,i€Z2

sgn(#) Z) RN

i=g <1 — a(z,&)

where a(z,z) is used to achieve stiction. The
a(z,) used for these simulations is given by:

0 |Z| < Zpa

a(z, &) =< 1 G ) 1
J SN T———" ) + 5 Zba < |z] < Zmax
1 |2] > Zmax
8

Requirements on the choice of a(z, ) are developed in
Section 3.

The applied force of Figure 2 was chosen to challenge
the stiction capability of each model, the force ramps up
to cause break-away, and then returns to a level below
that of Coulomb friction. Additionally, an oscillation is
present, such as could be introduced by sensor noise or
vibration.
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Figure 2: Applied force for the simulation of Figure 3

The response of friction models 1-4 is seen in Figure 3
and summarized in Table 1. Model 1 renders neither
presliding displacement nor stiction. The absence of
stiction is seen in the time interval from 2-10 seconds
where steady drift occurs.

Model 2, the Karnopp model, renders stiction but no
presliding displacement: during the interval from 2-10
seconds there is no motion.

Model 3, the LuGre model [5], renders presliding
displacement, in the form of the oscillatory response
to the oscillatory applied force, but does not render
stiction. Rather, there is a steady drift in position
during the interval from 2-10 seconds.

Model 4, the Elasto-Plastic model, renders both pres-
liding displacement and stiction. Presliding displace-
ment is seen in the oscillatory response to the oscillatory
applied force, and stiction is indicated by the absence of
net motion during the interval from 2-10 seconds. Model
4 shows the importance of a careful definition of stiction:



Response of several friction models. For t> 0.2, [F(t)] < Fe.
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Figure 3: Response of four friction models to the applied
force of Figure 2.

when time-varying forces are applied, even if F,ppieq is
less than the break-away force, presliding displacement
gives rise to motion.

1.1.3 Additional Frictional Dynamics

Figure 4: Stribeck curve of steady-state friction force
versus rigid body velocity . f, and fo correspond to
the maximum steady-state and Coulomb magnitudes of
friction force, respectively.

The Stribeck curve describes friction as a function of
steady-state sliding velocity. A typical example is seen
in figure 4. Individual consideration of Stribeck friction,
frictional memory and rising static friction is not the
focus of this paper. As with the LuGre model, Stribeck
friction, frictional memory and rising static friction are
rendered by the Elasto-Plastic friction model.

2 Internal State Models

Consider the class of friction models involving a
single state variable in which rigid body displacement
z is decomposed into its elastic and plastic (inelastic)
components z and w:

T=z+w. 9)

Such “elasto-plastic” models were proposed by Prandlt
to represent the behavior of solids under stress [13],
are applied here to represent friction. Referring to
Dahl’s model [6] to Eqn’s (3) or (7), it is observed that
distributing £ and integrating any of these equations
over an interval of time yields the form of Eqn (9).

The state variable z is taken to be the elastic (mem-
oryless) portion of the displacement while the implicit
variable w describes the plastic (history dependent) por-
tion of the displacement. It can be represented by the
physical analogy depicted in Figure 5. Here, the mass
experiences a friction force due to the deformation (and
inherent damping) of a single lumped asperity contact.
The state or motion history for this class of models is
completely embodied in the variable z. The system in-
put is rigid body velocity & and its output is friction
force f.

sliding mass

lumped elastic asperity

Figure 5: Model of block subject to friction force
showing decomposition of displacement z into elastic
and inelastic components, z and w.

It should be noted that while the depicted system is
only a physical analogy, the decomposition of total tan-
gential displacement into elastic and plastic components
is completely general. In the following subsections we
define stiction, passivity and other properties in terms of
this decomposition. Many existing state variable mod-
els fit within this framework including the Haessig and
Friedland, Dahl and LuGre models [6, 8, 5].

2.1 Stiction

Stiction corresponds to the existence of a breakaway dis-
placement 2zp, > 0 such that for |z| < zp, all motion
of the friction interface consists entirely of elastic dis-
placements. In this context, elastic displacement z cor-
responds to presliding displacement and plastic (inelas-
tic) displacement w corresponds to sliding displacement.
Thus, stiction can be defined formally in terms of plastic
displacement w as follows.

Definition 1 A friction model possesses a true stiction
phase if there exists a breakaway displacement zp, > 0
such that |2(t)| < zua implies w(t) = 0,Yi € R.

In solid mechanics, the stiction condition is analogous
to the existence of an elastic region on a material’s
stress-strain curve. The breakaway displacement can be
related to the strain experienced at the elastic limit, the
stress at which plastic yielding begins to occur [10].
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2.2 Sticking and Sliding

Sticking and sliding can now be defined in terms of rate
equations which follow directly from the definition of the
state variable z.

; 3 } sticking—elastic displacement,
(10)
IZ i 76] } sliding—plastic displacement.

Combined sticking and sliding require a more careful de-
scription because there are actually three cases involved.
The governing rate equation, from (9), is given by:

G=541 (11)

Case 1: Transitions between sticking and sliding.
Here we have

sgn(z) = sgn(w) = sgn(z). (12)

During the transition from sticking to sliding, the collec-
tion of asperity contacts begins to deform plastically and
shear. They do not shear all at once, however; there is
some finite displacement over which both the presliding
and slip rates are nonzero. The signed equalities con-
strain the rates of elastic and plastic deformation to fall
between the limits obtained in the cases of pure sticking
and steady-state sliding.

Case 2: Elastic relaxation due to the Stribeck
effect.

The Stribeck curve, as depicted in Figure 4, indicates
that the steady-state friction force is a decreasing
function of velocity magnitude. Following an increase in
velocity, the elastic deformation must decrease, despite
continued sliding, to produce the smaller steady-state
friction force. The inequality

sgn(z) # sgn(z). (13)
will hold during the elastic relaxation.

If the friction model includes an elastic damping term,
such as 0,2 in Eqn (2), the elastic damping can reverse
the direction of the friction force during relaxation—
rendering the model nondissipative [1]. This is seen in
figure 6. We call this the ‘Stribeck slingshot effect’ be-
cause the modeled friction actually accelerates the mass
forward, which, of course, is a non-physical modeling ar-
tifact. The Stribeck slingshot effect can be avoided by

proper choice of model parameters (see Eqn (19), below
and [1]).

Case 3: Elastic ‘super relaxation’ following mo-
tion reversal. Immediately following a reversal of ve-
locity #, the magnitude of the elastic deformation de-
creases. In the context of Figure 5, the elastic asperity
must relax before stretching in the opposite direction.

Friction Reversal with Sharp Acceleration
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Figure 6: Friction reversal arising with an internal
state friction model and Stribeck friction; LuGre model,
system of figure 1 with parameters M = 1, fo =1, fa =
1.5, oo = 10000, o; = 200, 03 =0, vs = 0.1.

In friction models, the rate of relaxation may exceed
the rigid body velocity, giving

sgn(z) # sgn(w). (14)

We refer to this phenomenon as super relaxation.

Super relaxation appears to be a non-physical condi-
tion for an inertialess contact model. Its consequence is
that during relaxation some elastic energy that other-
wise would be returned to the sliding mass is dissipated
through sliding. See [7] for further details.

2.3 State variable models in the literature

The equations describing the dynamics of the frictional
state variable, (7), and the friction force, (2), are
repeated here for convenience.

. . . go . : Jo .
=z (l—a(z,2) ——<sgn(z)z} , —=>0,71€Z2
(1-et0) T w0 2) . 1
v (15)
fi=o00z+o012+022, o;>0. (16)

By the proper choice of model parameters o; and
function «, these equations encompass a number of
friction models including those of Dahl [6], Haessig
and Friedland [8] and Canudas de Wit et al. [5]. In
particular, the following theorem states the conditions
under which a model of this form can exhibit stiction.

Theorem 1 A friction model described by (15)-(16)
possesses a stiction phase if and only if there exists a
2ba > 0 such that a(z,%) =0, Vz € {|z] < zva},VE € R.
This result is independent of the integer exponent used
in Dahl’s model.

Proof: Assume that the model possesses a stiction
phase and is sticking with 2 = z. By (15) we
must have: «a(z,z)sgn(z)[oo/fs(2)] = 0. Since
oo/ fs(2) > 0, this is true if either 2(t) = 0 or
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afz,z) = 0. But 2(t) = 0 contradicts the assumed ex-
istence of a stiction phase. Thus, it must be true that
afz,t) =0,Vz € {|z| < 2pa},VZ € R.

Now assume that a(z,z) =
Clearly 2 = £ and w = 0 for |z| < z1,, so that the model
possesses a stiction phase.

These results can be used to evaluate the properties
of models fitting the form of (15)-(16). For example, the
LuGre model satisfies the inequality

0 < afz, ) (17)

ao <

20 cx
fs(2)

By the preceding theorem, we see that Dahl-like models
such as the LuGre model do not possess a stiction phase.
Thus, with the exception of a constant friction force,
fi(1) = fi(to),Vt > to, any friction force history produces
slip.

3 The Elasto-Plastic Model

In this section, we present a model of the form of
(15)-(16) that possesses the following properties:

1. The presliding displacement is bounded: If
|2(0)| < 2m with zm = fu/oo > 0 then |2(f)] <
Zm, ¥t > 0.

2. Super relaxation is precluded: 0 < dz/dz < 1 if no
Stribeck effect is modeled and —oo < dz/dz <1
otherwise.

3. The model possesses a stiction phase: A breakaway
displacement 2z, > 0 exists such that the model
behaves elastically for |z] < 2pa-

4. During sliding, the friction force opposes slip:
sgn(f) = sgn(w), Ve # 0.

5. The model is dissipative for all = # 0.
To achieve these properties, we define the piecewise

continuous function a(z,x) as follows with
When sgn (z) = sgn (2) :

0 j2} £ zba
a(z,z)=¢ 0<a<l1 Zba < |2} < Zmax (T) (18)
1 |z| > Zmax (£)
0 < Zba < Zmax(®) = f“(z) VieR (19)

When sgn (&) # sgn (z) :
a(z,2)=0

Graphically, the function a(z,z) for sgn(¢) = sgn(z),
has the general shape depicted in Figure 7. This
function controls the rate of change of z with respect
to z, as is apparent from Eqn (15).

0,Vz € {|z| < 2ba},VZ € R.

o(z)
1

—zmax _Zba 0 Zba Zinax

Figure 7: Plot of a(z,z) for sgn(¢) = sgn(z).

We now prove that the model described by Eqn’s (15)-
(16) and (18)-(19) possesses properties 1-5.

Proof of Property 1, Presliding Displacement is
Bounded: Following Canudas de Wit et al. [5], define
the positive definite Lyapunov function V = 22/2 and
evaluate its time derivative using (15) and (18):

%‘ti =z [z (1 — oz, %) 725 sgn(@) )]

= —lzllal (alz,4) %5121 - sen(2) sen(2)) (20)

For |z| > fn/oo > fs(£)/00a(z,), the derivative
is negative. Thus we can conclude that the set =
{z:|2] € fn/00} is invariant with respect to (15), (18)
and (19). All solutions z(t) starting in ) remain there.
In the absence of the Stribeck dependency, f£s(%) = fo,
a constant.

Proof of Property 2, Conditions for sticking and
sliding are satisfied: By Eqn (7) this property is
equivalent to, with no Stribeck effect:

And with Stribeck effect:

sgn(:’c) <1 (21)

0 < a(z, —-,—

s DTG
The lower bound follows directly from (18). The upper
bound follows from Property 1, equations (18) and (19),
and Figure 4.

sgn() z < fm/fo < o0 (22)

Proof of Property 3, Existence of a Stiction
phase: The existence of a stiction phase follows di-
rectly from (18) and Theorem 1.

Proof of Property 4, Friction opposes slip: We
will present the case when a Stribeck effect is not
present. The additional conditions needed when to
assure Property 4 when Stribeck friction is present are
addressed in [1]. In either case, we have sgn(z) = sgn(w)
from Property 2 and (12). We can therefore attempt to
prove

sgn(ff = 0oz + 012+ 022) =sgn(z),Vw #0. (23)
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Substituting (18) we obtain

oo

sgn [ooz +o01% <l —a(z, ) r
C

sgn(x) z) + 02 z]
= sgn(z), Y # 0. (24)

By the inequality (21), it is clear that each term will
individually satisfy the equation if sgn(z) = sgn(z). But
if sgn(z) # sgn(z) then by (15)-(16), Z = % and the
system is sticking: w = 0.

Proof of Property 5, The model is dissipative:
For dissipativity, we will consider the map & — f,
from rigid body velocity to friction force. Using V (¢) =
1/2002? as a positive definite storage function, we write
the input-output product as
ife = (2+w)(00z+012)4+ aqi?
= V4012 +uf+ 0,32
> V, Vi#0. (25)

We can conclude that the map  +— f is dissipative for
any nonzero input. Note that each term in (25) has the
units of power. During sticking, the energy dissipation
rate is o £2, owing to asperity damping. During sliding,
Property 4 assures us a positive rate of dissipation, i f.

4 Demonstrations of the Elasto-Plastic
Model

Like the LuGre model the Elasto-Plastic model will
qualitatively render Stribeck friction, frictional memory,
rising static friction, in addition to presliding displace-
ment. Additionally, stiction is rendered. Modeling of
presliding displacement and stiction are shown in figure
3. Modeling of frictional memory is demonstrated in fig-
ure 8. This figure was generated with the motion and
model parameters used by Canudas et al. [5] to illustrate
the ability of the state-variable friction model to render
to the frictional memory demonstrated experimentally
by Hess and Soom [9].

1 Elasto-Plastic Model, D Frictional |
Z
8!
5
i
§
2
2
T
0.
AT 157 25
Velocity (m/s] x 107

Figure 8: Friction during oscillatory motions at 3
frequencies, frictional memory gives rise to the differing
levels of friction for acceleration and deceleration.

5 Conclusions

The state-variable friction models are desirable for
many applications because they avoid switch functions
or discontinuities. It has been seen, however, that
modeling presliding displacement and sliding in a single
function gives rise to subtle issues. These issues have
been explored, and an innovation is introduced which
offers the advantages of a state-variable friction model,
and renders both presliding displacement and static
friction.
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