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Abstract. The dynamical analysis of multibody systems undergoing simultaneous multiple-

point collisions is a relevant problem in various fields, such as robotics and biomechanics. 

Different approaches to study collisions can be found in literature, going from totally impul-

sive ones (dealing only with the pre- and post- impact states and assuming that the system 

configuration is unchanged) to totally continuous ones (where the time integration of the equ-

ations of motion is done and the system configuration changes throughout the collision inter-

val). Simultaneity cannot be treated properly in impulsive approaches because the 

mathematical formulation shows indetermination. These approaches try to overcome this 

drawback by defining single-point collision sequences (not necessarily realistic) and the final 

results are often sequence-dependent. Continuous methods are better suited to deal with si-

multaneity, but they often result into complicated models. This article proposes a simple hybr-

id linear approach based on a vibrational dynamical model. The dynamics at the colliding 

points is simulated through linear stiff springs undergoing very small deformations and thus 

generating a vibratory behavior of the system. The overall system configuration is assumed to 

be constant as far as the inertia matrix is concerned. The collision end corresponds to a zero 

spring force. Only planar application cases will be presented, but the approach is suitable for 

3D multiple-point smooth collisions in multibody systems with perfect constraints. Though 

only the case of perfectly elastic collisions will be shown, the methodology can be extended to 

collisions showing any degree of inelasticity. 
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1 INTRODUCTION 

The dynamics of multiple-point collisions in multibody systems is a topic still under dis-

cussion. The usual approaches found in literature to deal with it can be roughly classified into 

impulsive approaches and continuous ones [1,2]. Impulsive methods neglect the collision du-

ration; the post-impact mechanical state is obtained from the pre-impact one assuming that the 

system configuration is constant throughout the collision interval. These methods cannot deal 

in general with simultaneous collisions because the set of equations governing the process ex-

hibits indetermination. Under the hypothesis of perfect rigid bodies, which is the simplest 

model, small perturbations on the impact configuration may result in different sequences of 

single point collisions yielding different end conditions. If finite normal stiffness is assumed 

at the impact points, such sensitivity to initial conditions is associated to that of the evolution 

of the normal forces. Most works assume either a collision sequence with no overlapping (se-

quence of single point collisions) [3], or a total simultaneity of uncoupled independent im-

pacts [4], and use Newton’s or Poisson’s restitution coefficients modified according to energy 

criteria. Other authors choose a stochastic description of the problem and represent the solu-

tion as a random vector [5]. However, the final results are often sequence-dependent (if as-

suming a collision chronology), and not always realistic. 

In pure continuous methods, the contact surfaces are modeled through nonlinear springs 

and dampers, and the equations of motion are integrated during the impact time interval to 

obtain the post-impact mechanical state. They are far more demanding than the impulsive 

ones from the computational point of view, and the final results may be more realistic. The 

advantage of continuous approaches as compared to impulsive ones is that indetermination is 

avoided.  

This article proposes a simple linear approach retaining the high sensitivity to initial condi-

tions without assuming any particular collision sequence and allowing any degree of overlap-

ping. This approach is neither impulsive nor perfectly continuous but somehow hybrid, as it 

assumes constant configuration but vibrational continuous dynamics with a convenient time 

scale. At each impact point, the contact between solids is modeled through a finite linear nor-

mal stiffness (high enough to assume constant configuration throughout the process). The set 

of actually colliding points may change along the process, and consequently the number of 

stiff springs. The linear springs are only compatible with perfectly elastic collisions. In order 

to simulate inelastic ones, a suitable friction element should be coupled to the springs. 

At every time instant, that set defines a collection of vibration modes which allow to keep 

track of the normal velocities and displacements at the impact points in a simple analytical 

way. The inertia matrix in this vibrational formulation, which is constant, is obtained through 

a physically meaningful decomposition of the kinetic energy of the system into two compo-

nents: that associated with the motion in the normal direction of all the impact points (“con-

strained motion”), and that associated with the motion with zero normal velocities 

(“admissible motion”).  

The approach is presented for systems in which the colliding points do no present redun-

dancy. This leads to a number of vibrational modes (associated with the number of colliding 

points) lower or equal to the system’s number of Degrees Of Freedom (DOF). A more general 

procedure including redundancy has also been worked out, and will be addressed in upcoming 

publications. 
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Two application examples will be presented, both corresponding to planar motions. The 

first one consists on a rigid rod colliding with a smooth surface. Special attention will be paid 

to the sensitivity of the system to the collision sequence. The second example is a simple mul-

tibody model of an individual walking with crutches. The contact of the tip crutch with the 

ground starts with a collision which can be studied successfully by means of this vibratory 

approach.  

2 NORMAL IMPULSES AND INCREMENTAL CHANGES OF THE NORMAL 

VELOCITIES 

Let’s consider a n DOF multibody system, described by the n vector of generalized veloci-

ties �q , with m possible and simultaneously colliding points whose normal velocities are re-

lated to the generalized velocities through a m× n matrix of kinematic coefficients, n = �Av q . 

We will restrict our study to the case where the m normal velocities nv
 
are independent and, 

consequently, ( )rank m=A . The system percussive dynamics Lagrangian equations are 

,n∆ =�M q ΠΠΠΠ  (1) 

where M  is the n× n inertia matrix for the impact configuration, and nΠΠΠΠ
 
is the vector of gen-

eralized normal impulses. The n vector nΠΠΠΠ  is related to the m vector nP  of normal impulses at 

the impact points through T
n n= AΠΠΠΠ P . The incremental changes imp∆ �q  and n∆v  are related to 

the normal impulses nP  
through 

1 1and .T T
imp n n n

− −∆ = ∆ =� M A AM Aq P v P  (2) 

As ( )rank m=A , 
1 T−

AM A  is a symmetrical and positive definite m× m matrix. Accord-

ingly, there exists a biunique relationship between n∆v  and nP . Thus, if n∆v
 
are known, nP  

and the associated imp∆ �q  can be calculated as 

( ) ( )
1 1

1 1 1and .T T T
n n imp n

− −
− − −= ∆ ∆ = ∆�AM A M A AM AP v q v  

(3) 

The time evolution of vector n∆v
 
associated with the multiple-point impact can be conven-

iently estimated by means of a linear model for the stiffness at the collision points. The 

nonlinear Hertz model would lead to a time consuming integration process, while the linear 

approach leads to a problem of modal superposition. The actual contact points may change 

along the impact process, therefore the stiffness matrix and, consequently, the eigenfrequen-

cies and eigenmodes, will also change. However, for each time interval where the set of con-

tact points is invariant, the evolution of the normal velocities 
nv  and displacements nδδδδ

 
can be 

analytically obtained by means of a modal superposition. If 0n =δδδδ  is associated with contact 

without compression at the impact point, the set of actual colliding points changes whenever: 

• 0njδ = and 0njv >  (end of collision at point j ) 

• 0niδ = and 0niv <  (starting collision at point i ) 

3 FORMULATION OF THE LINEAR MODEL 

Substitution of n∆ = ∆ �Av q  in Eq. (3) leads to 

( )
1

1 1 .T T
imp c

−
− −∆ = ∆ ≡ ∆� � �M A AM A A Hq q q  

(4) 
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Matrix cH  is a well-known matrix associated with the decomposition of the kinetic energy 

for unilaterally-constrained multibody systems [6]. Matrices cH  and ( )c−I H  (with I = iden-

tity matrix) decompose the generalized velocity vector �q  into two components, c a= +�q u u , 

with c c= �Hu q  and ( )a c= − �I Hu q , associated with the spaces of constrained and admissible 

motions respectively. The kinetic energy then separates into kinetic energy associated with the 

constrained motion, 

( ) ( ) ( )
1

11 2 1 2 ,T T T
c c c n nT

−
−= =M AM Au u v v  

(5) 

and that associated with the admissible motion, ( )1 2 T
a a aT = Mu u . According to Eq. (5), the 

reduced matrix ( )
1

1 T
n

−
−≡M AM A  is the m×m inertia matrix associated with the normal ve-

locities nv . If elastic constraints with stiffness constant jk  are assumed at the collision points, 

a m DOF linear vibration problem may be formulated by means of the inertia matrix nM  and 

the stiffness matrix  
*
nK   with elements *

j jk k=   if there is contact at the collision point j, and 
* 0jk =  otherwise. Eigenvalues and eigenvectors of the dynamical matrix 

1 *
n n
−≡D M K  define 

the eigenfrequencies and eigenmodes of the vibration problem. The evolution of ( )n tv  and 

( )n tδδδδ  can be obtained from the initial conditions through modal superposition. Whenever 

there is a change in the set of contact points, 
*
nK *

nK  is changed accordingly, and the eigen-

modes and eigenvalues are recalculated. The initial conditions for the new phase are the final 

ones of the preceding phase. The collision problem is over when 0njv >  and 0njδ ≥  every-

where. The total change of the system generalized velocities imp∆ �q , can be obtained from that 

of the normal velocities ( ) ( )0n n end nt∆ = −v v v  through Eq. (3). 

4 APPLICATION EXAMPLES 

Two application examples with planar motion have been considered: a single rigid body 

system and a multibody one. The ground stiffness has been taken 
810 N m  for the first one, 

and 
910 N m  for the second one. Different initial states have been explored in order to illu-

strate the sensitivity to the initial conditions, characteristic of collision problems. 

4.1 Example I: Single rigid body 

The first example consists on a two-point impact of a rod on a fixed ground, Fig. (1). The 

mass is concentrated on the first half of its length, and the colliding points P and Q will be 

located at the rod ends. As the two normal velocities are independent, there is no redundancy. 

 

 

Figure 1: Rod colliding with a fixed ground. 
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We have explored two different sets of initial velocities (pure vertical downwards transla-

tion, and downwards translation plus clockwise rotation) while keeping a same initial confi-

guration (horizontal). In order to explore the system sensitivity to different collision 

sequences, different initial normal displacements (a few micrometers) of the colliding points, 

( )Pn
−δ  and ( )Qn

−δ , have been considered in order to force different contact forces evolution.  

For each set of initial velocities, two different cases have been simulated: simultaneous 

collision ( ) ( )( )P Q 0n n
− −δ = δ =  and first collision at Q ( ) ( )( )P 0 Q 0n n,− −δ > δ = . The plots 

show the evolution of the P and Q normal displacements (upper left), kinetic energy (lower 

left), translation DOF (upper right) and rotation DOF (lower right). As no dissipation has been 

considered, all cases show a final kinetic energy equal to the initial one. However, its evolu-

tion is different according to the collision phases. The P and Q final velocities and the rod 

DOF show not only different evolutions but also different final values depending on the se-

quence. Table 1 contains all this information for the different cases plotted in Figs. (2) to (5). 

 
Initial conditions Final state 

Fig. Normal displacements 

( ) ( ){ }P Qn n,− −δ δ  

Generalized velocities 

{ }1 2 3q q q� � �  

P, Q normal velocities 

( ) ( ){ }P Qn nv ,v+ +  

2 { }0 0  ( ){ }0 1 0. m s−  { }( )113 10 59 49. . mm s  

3 { }35 0 mµ  ( ){ }0 1 0. m s−  { }( )121 54 32 04. . mm s  

4 { }0 0  ( ) ( ){ }0 1 1. m s . rad s− −  { }( )62 99 258 86. . mm s  

5 { }25 0 mµ  ( ) ( ){ }0 1 1. m s . rad s− −  { }( )65 31 253 06. . mm s  

Table 1: Initial conditions and final velocities of the rod colliding points. 

 

Figure 2: Evolution of ( )n tδδδδ  and ( )T t  (left) and of the three DOF (right) in a two-point impact of a rod for 

the case of pure downwards translation. The collision starts simultaneously at both points. 
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Figure 3: Evolution of ( )n tδδδδ  and ( )T t  (left) and of the three DOF (right) in a two-point impact of a rod for 

the case of pure downwards translation. The collision at point Q starts before that at point P. 

 

 

Figure 4: Evolution of ( )n tδδδδ  and ( )T t  (left) and of the three DOF (right) in a two-point impact of a rod for 

the case of downwards translation plus clockwise rotation. The collision starts simultaneously at both points. 
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Figure 5: Evolution of ( )n tδδδδ  and ( )T t  (left) and of the three DOF (right) in a two-point impact of a rod for 

the case of downwards translation plus clockwise rotation. Collisions show no overlapping. 
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Figure 6: Evolution of ( )n tδδδδ and ( )nv t
 
in the two-point impact of the rod in Fig. (5). 

4.2 Example II: Multibody system 

A simple planar model of a subject with crutches is shown in Fig. (7). It is composed of 

four segments (legs, torso, upper arms, and arms plus crutches) linked by revolute joints, 

modeling the hip, shoulder and elbow joints. Coordinates 1q  
and 2q  indicate the position of 

the feet, coordinate 3q  denotes the absolute orientation of the legs, 4q  
is the relative angle be-

tween torso and legs, 5q  
is the relative angle between upper arms and torso, and 6q  

is the 

relative angle between crutches and upper arms. All the angular coordinates are clockwise 

orientated. The anthropometric parameters are the ones for a subject whose total mass is 70 kg 

and the height is 1.75 m according to [7]. The crutches have a mass of 1.2 kg and are 1 m long 

These parameters are summarized in Table 2.      

 

 Legs Torso Upper Arms Arms+crutches 

m (kg) 22.54 40.46 3.92 4.28 

IG (kg·m
2
) 2.07 2.66 0.044 0.433 

l (m) 0.93 0.51 0.33 1.25 

a (m) 0.51 0.34 0.14 0.33 

Table 2:  Anthropometric parameters of the model of the individual with crutches. 
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In real crutch walking, the post-impact normal velocity of the crutch tip has to be zero. 

However, this condition will never be attained with the present approach as neither dissipation 

nor friction have been included. The purpose of the example is to explore the validity of our 

approach for a multibody system with planar motion rather than study realistic crutch walking.   

Two different sets of initial velocities have been explored but only one initial configuration 

(leading to initial ground contact at feet and crutch tip) has been considered. This information 

is summarized in Table 3. As in the previous application example, the plotted variables in 

Figs. (8) and (9) are the evolution of the feet and crutch tip normal displacements (upper left), 

the kinetic energy (lower left), the translation DOF (upper right) and the rotation DOF (lower 

right). The absence of dissipation leads again to a conservation of the kinetic energy. 

 

Figure 7: Planar model of an individual walking with crutches. 

 

Fig. Initial configuration Initial velocities 

8 

{ }0 0 15 10 150 20o o o o− = −q  
( ){ }0 0 2 0 0 0rad s− =�q  

9 ( ) ( ){ }0 0 5 1 0 0 0. m s rad s− = −�q  

Table 3: Initial states explored for the individual with crutches. 

 

Fig. (8) shows a single-point collision (crutch tip) case. The initial state is responsible for a 

low positive value for the feet normal separation velocity derivative, so a feet upward motion 

( )( )feet 0nv
− >  is immediately started. This upwards motion is monotonous throughout the 

impact interval. As there is only one spring undergoing compression, the evolution of the ki-

netic energy follows a sinusoidal evolution. 
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Figure 8: Evolution of ( )n tδδδδ  and ( )T t  and of the system’s DOF in a simple crutch walking model. The initial 

state leads to a single-point collision. 

 

Fig. (8) shows a single-point collision (crutch tip) case. The initial state is responsible for a 

low positive value for the feet normal separation velocity derivative, so a feet upward motion 

( )( )feet 0nv
− >  is immediately started. This upwards motion is monotonous throughout the 

impact interval. As there is only one spring undergoing compression, the evolution of the ki-

netic energy follows a sinusoidal evolution. 

 

 

Figure 9:  Evolution of ( )n tδδδδ  and ( )T t  and of the system’s DOF in a simple crutch walking model. The initial 

state leads to a first two-point simultaneous collision, and a second phase consisting on a single-point collision. 
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In Fig. (9) the initial state results in ( )crutch 0nv
− <  and ( )feet 0nv

− < , so a two-point colli-

sion takes place. The first minimum in the kinetic energy plot is mainly associated with both 

feet and crutch compression. The second wide minimum is associated exclusively to the feet 

compression.  

 

Fig. Initial configuration Initial generalized velocities 

8 

{ }0 0 15 10 150 20o o o o− = −q  
( ){ }0 0 2 0 0 0rad s− =�q  

9 ( ) ( ){ }0 0 5 1 0 0 0. m s rad s− = −�q  

Table 3: Initial states explored for the individual with crutches. 

5 CONCLUSIONS 

A simple linear vibrational approach has been presented to study smooth multiple-point 

impacts in multibody systems with perfect constraints and 3D motion. It has been presented 

for perfectly elastic collisions for the sake of simplicity, but it can be easily extended to colli-

sions showing any degree of inelasticity. For the same reason, only the case of colliding 

points without redundancy has been considered, but the method can be extended to redundant 

colliding points. 

The approach assumes a constant system configuration as far as the system inertia matrix is 

concerned, and so in this respect it is close to impulsive approaches. Nevertheless, it assumes 

continuous vibrational linear dynamics at the colliding points, with a convenient time scale in 

order to be consistent with the system constant configuration assumption. A characteristic fea-

ture of the approach is the use of a reduced inertia matrix associated with the possible simul-

taneous colliding points. Its dimension is equal to the number of these points, regardless the 

number of DOF exhibited by the system. That matrix is obtained by means of a physically 

meaningful decomposition of the system kinetic energy into that associated with the motion in 

the normal directions at the colliding points, and that associated with motion compatible with 

zero normal velocities.  

At each actually colliding point, the contact between bodies is modeled through a linear 

normal stiffness, high enough to guarantee the constant inertia matrix assumption. The set of 

actual colliding points may change along the process, and consequently the set of stiff springs 

to be considered and the resulting stiffness matrix used in the vibrational formulation. At 

every time, that set defines a collection of vibration modes which allow to keep track, in a 

simple analytical way, of the normal velocities and displacements of the full set of possible 

colliding points. 

As the normal forces at the colliding points are formulated from the normal displacements, 

the approach retains the high sensitivity of multiple-point collisions to initial conditions. 

Small perturbations of the initial normal displacements may lead to a quite different evolution 

of the normal forces and, consequently, of the system final velocities. 

The two application examples show the approach capacity to retain the high sensitivity to 

initial conditions without assuming particular sequences of single point collisions, as is usual-

ly done in impulsive approaches, and without the time consuming integration process that 
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would require the use of the nonlinear contact stiffness Hertz model. For systems with a high 

number of DOF, the presented approach is also less time consuming than that of a vibratory 

linear model directly associated with the system original (without reduction) inertia matrix.  
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