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Abstract—Different models for estimating depth from de-
focused images have been proposed over the years. Typically
two differently defocused images are used by these models.
Many of them work on the principle of transforming one or
both of the images so that the transformed images become
equivalent. One of the most common models is to estimate
the relative blur between a pair of defocused images and
compute depth from it. Another model known as the Blur
Equalization Technique (BET) works by blurring both images
by an appropriate pair of blur kernels. The inverse approach is
to deblur both images by an appropriate pair of blur kernels.
In this paper we compare the performance of these models
to find under what conditions they work best. We show that
the common approach of using the Gaussian approximation of
the relative blur kernel performs worse than a more general
approximation of the relative blur kernel. Furthermore, we
show that despite the reduction in signal content in BET, it
works well in most circumstances. Finally, the performance of
deconvolution based approaches depends on a large part on
the shape of the blur kernel and is more appropriate for the
coded aperture setup.

Keywords-Depth from Defocus, Point spread functions, Rel-
ative Blur, Blur Equalization Technique, Deconvolution

I. INTRODUCTION

Images taken with a finite aperture camera can have
regions that are out of focus. These regions correspond to
scene points that are outside the focal plane of the lens.
The amount of defocus blurs in these regions will vary with
depth and by measuring the defocus blur we can measure
depth. Different methods have been proposed for estimating
depth from defocused images. Most of the methods use a
pair of defocused images where two images of the same
scene are captured with different camera parameters. All of
these methods rely on modelling the relationship between
the observed defocused images.

In this paper we evaluate three of these DFD models. The
models considered are the widely used relative blur model,
blur equalization model, and deblurring based model. Most
DFD models including the ones evaluated in this work are
based on the assumption that the camera is a linear shift-
invariant system (LSI). In such systems the input output
relationship can be modelled using the system’s impulse
response which for optical systems is the point spread
function or the image of a point light source as seen by
the camera. For real cameras these PSFs are the result of

(a) Single pixel image, f/22 (b) Estimated PSF, f/22

(c) Single pixel image, f/11 (d) Estimated PSF, f/11

Figure 1: Examples of PSFs extracted from a single pixel
(left column) and estimated PSFs (right column) from our
calibration process. Object to sensor distance is 0.9 m and
focus distance 0.5 m. The depression in the middle of (a, b),
the ringing in (c, d) and also the brightening near the corners,
and smooth edges are the effects of diffraction. In general
the PSF is the result of defocus (i.e. depth dependent scaling
from Eq. 2), aperture shape, diffraction, different optical
aberrations (e.g. chromatic, coma, etc.), and sensor (e.g.
pixel size and color filter array pattern). Our PSF estimation
process – described in more details in [1] – can capture these
subtle effects.

defocus, diffraction, lens aberration, and sensor properties.
Defocus affects the scale of the PSF and diffraction, lens
aberration, aperture-stop affect the shape and smoothness of



(a) Defocus Formation
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(b) Variable Aperture (2A)
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(c) Variable Focus (2F)

Figure 2: a) Defocus blur formation. b-c) Absolute blur |σ1| (red), |σ2| (green) and relative blur σR (dashed) from Eq. (8)
versus inverse depth u−1 in diopters (D) i.e. m−1. b) Variable Aperture (2A) configuration, where the two images have the
same focal length and focused at the same distance but different f-number, and c) Variable Focus (2F) configuration, where
the two images have the same focal length and f-number but focused at two different depths.

the PSF. DFD models measure the scale of the PSF which
is the only depth dependent component of the PSF (e.g.
diffraction creates ringing artifacts which only depends on
the aperture size and wavelength).

The most commonly used model assumes that the blurrier
image can be obtained by convolving the sharper image
with a relative blur kernel. This is an exact model in the
case of Gaussian point spread functions. For non-Gaussian
PSFs this is an approximation. We consider two variations
of this model where the relative blur kernel is either es-
timated using general smoothness constraints on the kernel
or approximated as a Gaussian. The blur equalization model
makes use of the commutative property of convolution and
does not make any assumption about the type of the PSF.
Deconvolution based models such as the Generalized Wiener
Deconvolution used by Zhou et al. [2], try to estimate the
true sharp image and choose depth based on the reconstruc-
tion error.

It should be noted that we do not try to model the PSF or
evaluate what is a good general shape for the PSF. In fact
the shape of the PSF can have large variability and cannot
be represented by a single model (see Fig. 1). Instead our
main contribution is to evaluate different DFD models under
different PSF shapes and camera parameters.

The paper is organized as follows. Sec. II gives some
of the necessary background for DFD. In Sec. III we give
an overview of the models that are evaluated in this paper
and discuss their strengths and limitations. Sec. IV presents
the experimental evaluation of these models. Finally, Sec. V
concludes the paper with some possible applications of this
work.

II. DEFOCUS BLURRED IMAGE FORMATION

In this section we first describe the geometric model for
depth dependent scaling and then discuss how that relates
to the LSI model of the PSF.

Fig. 2a shows how a scene point at distance u is imaged
by a lens of focal length f and aperture diameter A. Light
rays emanating from the scene point fall on the lens and
converge at distance v on the sensor side of the lens. The
relationship between these variables is specified by the thin
lens model as:

1

u
+

1

v
=

1

f
. (1)

If the imaging sensor is at distance s from the lens then the
imaged scene point creates a circular blur pattern (as shown
in Fig. 1, the exact shape is more complex) of radius r as
shown in the figure. The thin lens model (Eq. 1) and similar
triangles from Fig. 2a give the radius of the blur in pixels:

σ = ρr = ρ
fs

2N
(
1

f
− 1

u
− 1

s
). (2)

In the above equation the ratio of focal length (f ) and f-
number (N ) is used instead of the aperture (i.e. A = f/N ).
The variable ρ is used to convert from physical to pixel
dimension. In the rest of this paper we will use σ to denote
blur radius in pixels.

Note that the blur can be positive or negative depending
on which side of the focus plane a scene point resides. For
circularly symmetric aperture the sign of the blur has no
effect in the blurred image formation process. In practice
the blur is not necessarily circularly symmetric (Fig. 1) and
can be used to disambiguate the sign of blur (e.g. [3] and
Fig. 6b and 6c).

If the scene depth is nearly constant in a local region,
then an observed blurred image i, can be modelled as a



convolution of a focused image i0, with a depth-dependent
point spread function (PSF) h(σ).

i = i0 ∗ h(σ) (3)

In the case of a circular aperture the PSF kernel will be a pill-
box function (i.e. a cylindrical shaped function) with radius
σ. However, it has been shown that due to lens diffraction
and other unmodelled characteristics of the optical system
the blur kernel is similar to the Bessel function [4]. To
simplify the depth estimation model one commonly used
shape is a Gaussian. When the PSF is modeled as a Gaussian
the spread of the Gaussian is, σG = σ/

√
2. However in

practice as shown in Fig. 1 it depends on the the shape and
size of the aperture as well as diffraction and lens aberration.
The main goal of this paper is to evaluate different DFD
models under such varying PSF.

The models evaluated in this paper take a pair of differ-
ently defocused images (i.e. captured using different optical
parameters) for depth estimation. The most common settings
for taking two defocused images are the variable aperture
(2A) and variable focus (2F) configurations. These configu-
ration are shown in Fig. 2b and Fig. 2c respectively. In the
variable aperture case both camera settings have the same
focus distance and the apertures are varied. In the variable
focus case both camera settings have the same aperture and
the focus distances are varied. There are many other possible
settings and the relationship between the settings can give
insights into the accuracy of different models. More details
on the optimal camera settings can be found in [5].

III. MODELS USED FOR DFD

The main objective in DFD is to estimate the blur radius
at each pixel and in turn estimate depth using Eq. 2. Many
different methods were proposed for this purpose using one
or more images, ranging from blur estimation from an image
of a step edge [6], [7], to using a pair of focused and
defocused image [6], to multiple defocused images e.g. [4],
[8]. In this work, we address the most common case of
using a pair of defocused images for depth estimation. In
the rest of this section, we discuss how a pair of defocused
images is used by the three models – the relative blur model,
BET and deconvolution based model – to estimate depth.
We highlight their underlying assumptions, approximation
ability, advantages and disadvantages.

A. Relative Blur Model

The relative blur model aims to find the amount by which
the sharper image is blurred to obtain the blurrier image.
This model has been used both in the frequency and in the
spatial domain [6], [9], [10]. The spatial domain relative
blur model was first proposed by Ens and Lawrence in [11].
They estimated the relative blur kernel from two observed
images. A simplified version of it assumes Gaussian kernel
and knowing the camera setting is sufficient for finding the

corresponding depth. This approach is used in the diffusion
based variational methods [8], [12].

In general, the blur in corresponding regions of two
defocused images will vary with the depth and camera
parameters. Therefore a region will either be blurrier in one
image but sharper in the other or vice versa. For example
in the variable focus example shown in Fig. 2c, a point at
1.4D is sharper in one image (red) and another point at 1D
is sharper in the other (green). To simplify the explanation
of the relative blur model, let us assume a fronto-parallel
plane being imaged with two different camera parameters.
In this case, one of the images will be sharper (iS) and
the other blurrier (iB). The observed image can be modeled
as convolution of the hypothetical sharp image i0 with an
appropriate PSF h and additive noise. Therefore the observed
sharper and blurrier images are:

iS = i0 ∗ hS + nS (4)
iB = i0 ∗ hB + nB . (5)

where nS and nB are additive noise.
Let hR be the relative blur which is the amount by which

the sharper (hS) PSF is blurred to get the blurrier (hB) PSF,
that is,

hB ≈ hS ∗ hR. (6)

For Gaussian PSFs the above equation holds with equality.
The key assumption made in the model is that,

iB ≈ iS ∗ hR
or, nB ≈ nS ∗ hR (7)

The equation holds with equality when nB = 0 and hR is
large.

Let the blur radii of the kernels hB and hS be σB and σS
respectively. The radius σR of the relative blur hR in Eq.6
is:

σR ≡
√
σ2
B − σ2

S . (8)

The relative blur estimation problem can be written as the
following optimization problem:

argmin
hR

‖iB − iS ∗ hR‖22 (9)

Eq. 9 can be solved using least squares. However, this
assumes we know in advance which image is the blurrier
one at each pixel. In the more general case given two
defocused images i1 and i2, we would have to decide which
one to blur and by what amount (i.e. σR). In such cases,
it is more convenient to use signed relative blur. We can
choose the sign of σR to be negative when |σ1| > |σ2| and
positive otherwise. Therefore when the sign of relative blur
is negative σB = σ1 and σS = σ2 and vice-versa when the
sign is positive. This idea is used when fitting a Gaussian
relative blur in the real experiments for this paper.
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(b) Pillbox PSF

Figure 3: Reconstruction accuracy shown using the log
power spectrum (F{.} is the Fourier transform) for sharper,
blurrier and the reconstructed PSF (dashed). a) Relative blur
reconstruction is best when the PSFs are Gaussian. b) For
pillbox (or any arbitrary) PSF our estimated kernel gives a
better approximation than the Gaussian relative blur kernel.

In this work we estimate the relative blur between two
defocused images by solving the following Quadratic Pro-
gramming (QP) problem.

argmin
hR

n∑
j=1

λj‖fj ∗ (iS ∗ hR − iB)‖22

+ λn+1‖∇hR‖22 (10)
subject to ‖hR‖1 = 1 , hR ≥ 0.

In the above optimization problem, iB is the observed
blurrier image and iS is the sharper image. The sharper and
blurrier images can be the absolute PSFs or texture images
or both. h is the PSF kernel that is to be estimated. fj is
a filter that is applied to the images. In the experiments,
we use f1 = δ, f2 = Gx, and f3 = Gy , where G∗ is
the spatial derivative of a Gaussian in the horizontal and
vertical directions. The constraints ensure that the kernel is
non-negative and preserves the mean intensity after convo-
lution. The optimization function is more general than the
one proposed by Ens and Lawrence in that ours support
asymmetric relative blur kernel. Furthermore the additional
image derivative, non-negativity and unity constraints results
in a robust and more accurate model of relative blur. The
QP formulation also allows us to use fast off-the-shelf QP
solvers (in our case Matlab’s quadprog).

For Gaussian approximation of relative blurs, we consider
the signed relative blur. For a given signed relative blur
corresponding to the spread of the Gaussian, we choose the
sharp image based on the sign of the hypothetical relative
blur. Then the assumed sharp image is synthetically blurred
by the appropriate Gaussian and compared with the assumed
blurred image. The signed relative blur that minimizes the
sum-of-squared error between the hypothetical blurred and
sharp images is chosen to be the spread of the Gaussian.

The relative blur model requires a single convolution

operation for every depth hypothesis. This is the least
amount of blurring that can be performed to generate the
blurred image. Therefore there is minimal loss in the signal
component. Fig. 3a and 3b show the reconstructed blurrier
PSF using the relative blur method. For Gaussian PSF pair
in Fig. 3a the reconstructed blurrier PSF is almost exact.
However real PSFs are not Gaussian and can have sharp
edges e.g. in coded aperture. While this can be modelled
by finding the closest relative blur approximation, using a
Gaussian approximation will result in large error. Fig. 3b
shows an example of relative blur using pillbox PSF pair.
A simple Gaussian approximation does not work as well as
the estimated relative blur from Eq. 10.

B. Blur Equalization Technique

The Blur Equalization Technique (BET) was proposed by
Xian and Subbarao in [13] for application in the S-transform
based relative blur estimation. More recently it has been used
for motion deblurring and optical flow [14]. It works on the
same principle as blurring one image to get the other, but
here both images are blurred so that they produce the same
result. The commutative property of convolution is used to
equalize the blurs in the observed image pair:

i1 ∗ h2 = (i0 ∗ h1 + n1) ∗ h2
= (i0 ∗ h2) ∗ h1 + n1 ∗ h2
≈ i2 ∗ h1 (11)

The assumption made here is that,

n1 ∗ h2 ≈ n2 ∗ h1 ≈ 0 (12)

This assumption does not hold when exactly one of the
images is in focus. However if we blur both images by
a small amount then we can expect the assumption to be
valid. The approximation error is small when both images
have large blur. But in that case, the signal content of the
images is also reduced which in theory will result in larger
variance in the depth estimates.

One of the advantages of this model is that it only requires
the absolute blur PSFs at every depth for a given camera
setting. This makes it more scalable in practice, since we do
not have to consider every possible pair of camera settings
as in the relative blur model. Furthermore, BET correctly
models the blurring process for any type of PSF kernels.
The main disadvantage is that BET requires synthetically
blurring both images. This reduces the signal content in
both images, which in turn increases the variance in depth
estimation. Furthermore Eq. 12 suggests that there will be
approximation error when a scene point in one of the images
is within the depth-of-field.

Finally, BET can have problem for certain type of PSFs.
For instance Fig. 4a shows that for Gaussian PSFs, applying
BET results in rapid decrease in the higher frequency com-
ponents. This will result in higher variance in the estimate.
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Figure 4: Log power spectrum for applying BET for a)
Gaussian and b) pillbox PSFs. For Gaussian PSFs, BET
causes faster decay in higher frequency components.

On the other hand for pillbox PSFs (Fig. 4b) the rate of
decrease in frequency is less significant.

C. Deconvolution based Model

Deconvolution based models work on the same principle
of equalizing two defocused images. Here the goal is to
find the latent sharp image. Every depth has a pair of PSFs
associated with it. The correct PSF pair will produce a sharp
image with the lowest reconstruction error. In this paper we
consider the Generalized Wiener Deconvolution reconstruc-
tion cost used by Zhou et al. [2]. The cost function used
in this model is a general version of Wiener deconvolution.
It uses the pair of images to estimate the sharp image. The
deconvolution model is specified in the Fourier domain as
follows:

argmin
d

∑
j

||Î0Hj(d)− Ij ||2 + ||CÎ0||2 (13)

where, Ij is the Fourier transform of the jth defocused
image and Î0 is the Fourier transform of the latent sharp
image that is being estimated. The goal is to find the depth
dependent blur kernel Hj(d) in the Fourier domain that
explains the observed blurred images. In the last term, C
is a prior derived from the average of multiple natural
images. There are other variations of this model that use
more complex natural image priors [15]. It should be noted
that, in practice, the prior is only used during the latent
image estimation step. For depth estimation, only the data
cost is used.

Similar to BET, this model requires linear number of
PSF calibration steps. The model is applicable for single
image depth estimation and can also estimate the latent sharp
image. However this method requires solving an inverse
problem by finding the depth hypothesis that produces the
best sharp image. In the frequency domain deconvolution is
equivalent to dividing the observed blurred image with the
PSF. For some PSFs there can be zeros in the frequency
spectrum (e.g. pillbox in Fig. 3b) of the PSFs or in some

cases rapid decrease in the high frequency components (e.g.
Gaussian in Fig. 3a). Having zeros in the frequency spectrum
can help in recovering depth but not the sharp image
(because wrong PSF hypothesis will result in large error)
whereas having small but non-zero frequency components
can result in large ambiguity because nearby depths will
produce the same deblurred image. Therefore deconvolution
based models require carefully choosing the shape of the
PSF and can also be sensitive to the type of texture in the
scene.

IV. EXPERIMENTAL EVALUATION

A. Real Defocus

Calibration: As shown in Fig. 1 real PSFs are not just a
scaled version of the apeture where the scaling is determined
by Eq. 2. They are the result of defocus blur, diffraction,
optical aberrations, and the sensor. Since the objective of
this work is to evaluate the DFD models under such widely
varying PSFs, for the real defocused experiments, we need
to calibrate the absolute and relative blur PSFs for different
depths and camera settings. For this we use a grid of disks
with known radius and disk center distance as the calibration
image. The main idea here is to use Eq. 10 with iS as the
latent sharp image of a disk and iB the observed defocus
blurred image of the disk to infer the blur kernel. We use a
24 inch LED display of resolution 1920×1200 for rendering
both the textures and the calibration pattern. The images are
captured in raw linear format using a Nikon D90 camera
with a 50 mm prime-lens, under varying focus and aperture
settings, and placing the camera fronto-parallely to the dis-
play at different distances. The processing pipeline includes
first radiometrically correcting the raw images, performing
magnification correction and alignment, and normalizing the
intensity of the images by their mean. Our approach for
estimating PSFs from disk images is robust to display pixel
size and camera configuration. Further details can be found
in [1].

DFD Evaluation: To evaluate the DFD models we
first calibrate the PSFs for 27 object-to-sensor distances
spaced uniformly (roughly) in inverse depth space ranging
between 0.61 m to 1.5 m. We choose uniform subdivision
in inverse depth space because blur changes linearly with
inverse depth (recall Eq. 2). In practice, the relationship is
approximately linear because we are moving the lens instead
of the sensor. We capture images of a 1/f texture pattern
under various defocus conditions. For a pair of input images
depth estimation is performed by choosing the appropriate
PSFs for every depth hypothesis and evaluating the model
cost. The per-pixel cost is then averaged over a finite window
and the depth label is chosen to be the one that minimizes
the cost at every pixel.

The depth from defocus results are shown in Fig. 5.
Figures 5a and 5b correspond to variable focus setting
with f/11 with focus distances being 0.61 m and 1.5 m,
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(c) Focused at 1.5 m f/11 and f/22

Figure 5: Results from real defocused images of a texture.

and 0.7 m and 1.22 m. The theoretical blur radii for Fig.
5b corresponds to Fig. 2c. Since Fig. 5a focuses at the
scene boundary the maximum blurs are larger than Fig.
2c. Fig. 5c corresponds to variable aperture with f/22 and
f/11 and focus distance set to 1.5 m. In all cases the
Gaussian relative blur approximation has the most error
and sometimes deviating from the true depth by about two
standard deviations. When both PSFs are large e.g. near 1.6
D for variable aperture (Fig. 5c), relative blur estimation
has more approximation error and as a result the estimates
start to deviate from the true value. The deconvolution based
method is more sensitive than the other models in that it
sometimes deviates abruptly from the true value (e.g. near
1.6 D in (a) and 1.4 D in (b)). Among all the models BET
usually has the least amount of estimation error.

B. Synthetic Defocus

For generating synthetically defocused images, we first
generated a discrete set of PSF kernels of different size
and shape and their corresponding relative blur kernels or
Gaussian approximations of them. The PSF kernels are
scaled and rotated based on the chosen camera and scene
parameters. In all the experiments we have f = 50 mm
and ρ = 180 pixels-per-mm. The scene is considered to
be within 0.61 m to 3 m. A 512× 512 image of 1/f noise
texture is synthetically blurred with the PSF pair that is being
used for evaluation. This was followed by adding additive
Gaussian noise σn = 2% to the blurred images. Finally,
depth estimation was done using the relative blur model
with estimated relative blur kernel, the Gaussian relative
blur approximation, Blur Equalization Technique (BET),
and the deconvolution model using the generalized Wiener
deconvolution algorithm.

For the synthetic experiments we tried to highlight the
limitations of different models. Therefore we choose PSFs
of different shapes with different camera configurations. For
PSFs we used Zhou et al’s coded aperture [2] with both

variable focus and variable aperture configuration, pillbox
and Gaussian PSFs with variable focus configuration.

The PSFs for the coded aperture was simulated by first
computing the signed blur radius at a given depth for our
chosen camera settings and then appropriately scaling and
flipping the aperture pairs. We then estimate the relative blur
using Eq. 10 and also find its Gaussian approximation. For
our calibrated PSFs we simply take the observed absolute
PSFs at a given depth and estimate their relative blur.

In the variable focus setting the camera is focused at 0.7 m
and 1.22 m i.e. within the scene rather than at the boundary
similar to Fig. 2c. For the variable aperture setting with the
coded aperture we used a slightly unconventional setting in
that the camera is focused within the scene (i.e. similar to
Fig. 2b) which in our case is at 1 m. Usually with variable
aperture the focus is at one end of the scene. In the case of
symmetric PSF such as Gaussian or pillbox this circumvents
the problem of detecting the sign of the blur in Eq. 2. But
with asymmetric coded aperture pair we do not have any
sign ambiguity [5].

Results for the synthetic experiments are shown in Fig. 6
with (a)–(e) using simulated PSFs using the apertures shown
in the figure inset and (f) using estimated PSFs from real
defocused images. The top row contains experiments with
Zhou et al’s coded aperture. In the first two cases defocused
image pairs are simulated assuming a fixed aperture shape.
In the 2F case (Fig. 6a), the Gaussian approximation of
relative blur (magenta curve) performs worse than estimated
relative blur. Fig. 6b shows variable aperture with aperture
sizes f/22 and f/11. When focused within the scene,
the Gaussian relative blur approximation fails because it is
symmetric and cannot differentiate whether a scene point is
in front or behind the focal plane (for asymmetric aperture
the image of the PSF will be different in the two cases). In
contrast the estimated relative blur can differentiate between
the two sides because the estimated relative blur is asym-
metric. In Fig. 6c we used two apertures of the same size but
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inverse depth
0.4 0.6 0.8 1 1.2 1.4 1.6

in
v
e

rs
e

 d
e

p
th

0.4

0.6

0.8

1

1.2

1.4

1.6
Ground-Truth

Est. Relative Blur

Est. Gaussian Relative Blur

BET

Deconvolution

(d) Pillbox, 2F f/11
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(e) Gaussian, 2F f/11
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(f) Est. PSF, 2F f/11

Figure 6: Synthetically defocused image with different PSFs, camera settings, and noise σn = 2%. The blur radii for variable
focus (a, d–f) and the variable aperture in (b) correspond to Fig. 2c and 2b. Examples of the estimated relative blurs can be
found in http://cim.mcgill.ca/∼fmannan/relblur.html

different shape. In this case Gaussian approximation fails as
expected and estimated relative blur has more approximation
error resulting in larger bias in the estimates than the first
two cases.

Figs. 6d and 6e show experiments with symmetric aper-
ture with variable focus. In both cases deconvolution based
depth estimation (blue curve) fail to accurately estimate
depth. Also as expected the Gaussian approximation per-
forms the best for Gaussian PSF. Fig. 6f uses the estimated
PSFs from the real experiments. In this case all models
perform reasonably well with Gaussian approximation of
relative blur having slightly larger error than the other.
The result in this case is similar to the real experiments
indicating that the simulation process does not produce any
significant artifacts. It should be noted that in all cases
BET performs consistently well. Also except when the
relative blur estimation problem is complex e.g. differently
shaped aperture with fixed size, estimated relative blur has
acceptable accuracy.

V. CONCLUSION

In this paper we evaluated three different models for
DFD, namely, the relative blur model with estimated rel-

ative blur kernel and its Gaussian approximation, BET, and
deconvolution. We discussed the advantages and limitations
of these models in terms of scalability and accuracy, and
experimentally evaluated their performance under different
noise and PSF kernels. We showed that BET works well
despite blurring both images and is robust when both images
are initially blurred by a slight amount. The relative blur
model works well for different sizes and shapes of relative
blurs. The Gaussian relative blur approximation works well
mainly for small relative blurs and when the aperture has
a simple shape. We found the general version of Wiener
deconvolution to perform similar to the estimated relative
blur and BET.

The relative blur model with Gaussian approximation has
been widely used in practice and more often than Ens and
Lawrence’s approach. This is primarily because the Gaussian
approximation makes the estimation problem easier and
depth estimation can be solved in the continuous domain
e.g. using variational methods. However as we showed in
this paper, even under standard settings the Gaussian approx-
imation does not always give the best result. The conclusions
we can make are as follows. If relative blur model is
used then it should be approximated using Eq. 10 or some



similar method. If the Gaussian relative blur approximation
is used then one needs to ensure that the camera settings
are suitable for such approximation. In general BET is the
simplest to use. In fact BET is less affected by different PSF
shapes and camera configurations. The simple Generalized
Wiener Deconvolution has comparable performance but it is
sensitive to the shape of the PSF and can be affected by
errors in the PSF estimation, image noise and weak texture.
Relative blur based model is not very good when the PSFs
have complex shape or when it is difficult to estimate the
relative blur. However it is still much better than Gaussian
approximation of the relative blur which is widely used in
the literature.

For real images there are many factors that can dominate
depth estimation accuracy. For instance for sparse or low
contrast textures all models will perform poorly. Further-
more, it is also possible to choose the camera parameters so
that the modelling errors have less influence. For instance
large relative blurs are likely to exacerbate the relative blur
approximation error. Therefore in that case we can choose
camera parameters that reduces the relative blur between the
two defocused images. The goal of this paper was to high-
light the modelling errors and experimentally verify using
both synthetic and real defocused images. We believe this
would help DFD users to pay attention to the different issues
and help them choose the appropriate model, accurately and
easily estimate PSFs and appropriately choose the camera
settings.
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