
Blur Calibration for Depth from Defocus

Fahim Mannan∗ and Michael S. Langer†

School of Computer Science
McGill University

Montreal, Quebec H3A 0E9, Canada
{∗fmannan, †langer}@cim.mcgill.ca

Abstract—Depth from defocus based methods rely on mea-
suring the depth dependent blur at each pixel of the image.
A core component in the defocus blur estimation process
is the depth variant blur kernel. This blur kernel is often
approximated as a Gaussian or pillbox kernel which only works
well for small amount of blur. In general the blur kernel
depends on the shape of the aperture and can vary a lot
with depth. For more accurate blur estimation it is necessary
to precisely model the blur kernel. In this paper we present
a simple and accurate approach for performing blur kernel
calibration for depth from defocus. We also show how to
estimate the relative blur kernel from a pair of defocused blur
kernels. Our proposed approach can estimate blurs ranging
from small (single pixel) to sufficiently large (e.g. 77 × 77 in
our experiments). We also experimentally demonstrate that our
relative blur estimation method can recover blur kernels for
complex asymmetric coded apertures which has not been shown
before.

Keywords-Depth from Defocus, Point spread functions, Rel-
ative Blur, Optimization

I. INTRODUCTION

Defocus blur in an image depends on camera parameters
such as the aperture size (A), focal length (f ) and focus
distance, and the depth of the scene. When the camera
parameters are fixed, the blur varies as a function of depth.
The central problem in Depth from Defocus (DFD) is to
estimate the defocus blur at every pixel and convert that
to depth estimates using the known camera parameters.
Typically in DFD, two differently defocused images are
used and the problem is to find the depth that produces the
observed defocused images. For accurate depth estimation
we need to model the way defocus blur changes with camera
parameters and depth. This is done by modelling what
a point light source at different depths looks like under
different camera settings, that is, the point spread function
(PSF).

Although the PSF can be considered to be the image of a
point light source, in practice it is challenging to take images
of point light sources. Furthermore there is no true point light
source and for certain camera and scene configurations the
point source assumption does not hold. A real point light
source has a finite size and may not appear as a single point
even when it is in focus (e.g. Fig. 4a).

We propose a simple approach for calibrating PSFs for
different depths and camera configurations. We highlight

some of the issues involved in calibration assuming the
pinhole model or the thin lens camera model (aperture
ratio, center of projection, moving sensor, etc). We also
show how to calibrate the relative blur kernel for DFD.
Our main contribution is proposing an accurate procedure
for calibrating PSFs from disk images and estimating the
relative blur kernel. Our PSF estimation approach is robust
to noise, large blur (e.g. 77×77 blur kernel) and display pixel
density, and yet simple and flexible. For instance, we do not
require any complex priors in the optimization objective or
the texture to follow a certain distribution.

The paper is organized as follows. Sec. II gives some of
the necessary background for DFD. Sec. III discusses the
setup and preprocessing steps required for calibration. Sec.
IV presents how absolute and relative blurs are estimated.
Sec. V evaluates the estimated PSFs and their relative blur
kernels using synthetic and real defocused images.

II. BACKGROUND

To motivate the need for blur kernel calibration we first
look at how blurred images are formed and how defocus
blur changes with depth. Then we look at how the problem
of DFD is modelled using depth dependent blur kernels and
some of the relevant works in blur kernel estimation.

A. Blurred Image Formation

First we consider how a point light source is imaged by a
thin lens in Fig. 1. Light rays emanating from a scene point
at distance u from a thin lens fall on the lens and converge
at distance v on the sensor side of the lens. For a lens with
focal length f , the relationship between u and v is given by
the thin lens model as:
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If the imaging sensor is at distance s from the lens then the
imaged scene point creates a circular blur pattern of radius
r as shown in the figure. In general the shape of the blur
pattern will depend on the shape of the aperture. For a lens
with aperture A, the thin lens model (Eq. 1) and similar
triangles from Fig. 1 give the radius of the blur in pixels:
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Figure 1: Defocus blur formation.

The variable ρ is used to convert from physical to pixel
dimension. In the rest of this paper we will use σ to denote
blur radius in pixels. Note that the blur can be positive
or negative depending on which side of the focus plane a
scene point resides. For circularly symmetric aperture the
sign of the blur has no affect on the blurred image formation
process. But for asymmetric apertures, the two images would
appear slightly different because the corresponding PSFs
will be flipped both horizontally and vertically.

If the scene depth is nearly constant in a local region,
then an observed blurred image i, can be modelled as a
convolution of a focused image i0, with a depth-dependent
point spread function (PSF) h(σ).

i = i0 ∗ h(σ) (3)

In this paper our goal is to find the depth dependent
PSF h (which we sometimes refer to as absolute blur)
from observed blurred images i. For real defocused images
the lens and camera sensor will produce artifacts due to
diffraction and lens aberrations (e.g. chromatic aberration).
Therefore an accurate PSF estimation process needs to
capture the combined effect of defocus scale, diffraction and
lens aberrations.

Relative blur estimation requires a pair of defocused
images captured with different camera parameters. The most
widely used configurations involve varying either the aper-
ture size or the focus between the two images. We refer to
these configurations as variable aperture and variable focus
in the rest of the paper. The purpose of the relative blur
model is to find the degree by which the sharper image is
blurred to obtain the blurrier image. If the sharper image
iS has blur kernel hS , and the blurrier image iB has blur
kernel hB , then the relative blur between the two images
is hR where hB ≈ hS ∗ hR. Similar to the absolute blur
PSF estimation problem the estimated relative blurs need to
reconstruct the features of the blurrier PSFs.

B. Related Work

There have been several works on blur kernel estimation
from images. Most of them are motivated by deblurring
defocused or motion blurred images. Many are related to
blind image deconvolution. In this section we only consider
works that are related to blur kernel calibration i.e. very
accurate blur estimation using a calibration pattern.

Most blur kernel estimation methods require some knowl-
edge about the latent sharp image. In Joshi et al. [1] the
authors rely on first estimating the latent sharp edges and
then using that for PSF estimation. They also propose a
calibration pattern for performing more accurate PSF esti-
mation. Delbracio et al. [2] used the Bernoulli noise pattern
for PSF estimation. A similar noise pattern was used in [3]
for estimating intrinsic lens blur. An issue with using such
noise patterns is that the scene and camera setup need to be
such that the underlying noise pattern assumption is satisfied
in the projected image. Kee et al. [4] uses disk images similar
to ours but with a different objective function for estimating
the intrinsic lens blur.

In the case of calibrating the depth dependent relative
blur kernels, the only work known to us is by Ens and
Lawrence [5]. This relative blur model has been used both in
the frequency [6], [7] and in the spatial domain [5], [8]. Ens
and Lawrence calibrated the relative blur kernel from two
observed defocused images. As regularizers they used con-
straints that prefer the relative blur kernel to be in a certain
family of kernels. This family includes smooth circularly
symmetric kernels with zeros at the boundary. In our work
the relative blur calibration problem is a special case of the
absolute blur estimation problem. Our data terms consider
the gradient of the observed images and the smoothness
terms do not require the circularly symmetric assumption. In
the case of DFD, once the relative blur kernels are calibrated
for different depths, depth estimation for a pair of defocused
images (iS and iB) is done by looking up the relative blur
kernel that minimizes: argmin

hR

‖iB − iS ∗ hR‖22.

In terms of applying the estimated kernels for DFD
estimation, besides the relative blur method there is the
Blur Equalization Technique (BET) proposed by Xian and
Subbarao [9] that takes a pair of depth dependent abso-
lute blur kernels and chooses the depth that minimizes:
argmin
hS ,hB

‖iS∗hB−iB∗hS‖22. For the non-blind deconvolution

model, the estimated blur kernels are used to estimate
the sharp image by solving the minimization problem:
argmin

i0

‖i0 ∗ h − i‖22, where i0 is the latent sharp image

and i is the observed blurred image. By considering depth
dependent blur kernels this idea can be extended to DFD
[10], [11]. For more details on these different approaches to
DFD and their comparison see [12].



(a) Grid of Dots with 10s exposure (b) Grid of Disks with 0.2s exposure (c) 1/f texture with 0.5s exposure

Figure 2: (a) and (b) are defocused images of the calibration patterns. We use the disk images for PSF estimation and the
dot images for qualitative comparison. (c) defocused test image used for evaluating the DFD models. For all these images
the object to sensor distance is 1.5 m and focus distance is 0.5 m. The captured images are of size 4288× 2848 pixels but
we only use the center part for our experiments.

III. SETUP AND CALIBRATION

A typical approach in DFD is to use the known camera
parameters with the analytical equations for thin-lens blur
formation model and use a parametric PSF for depth estima-
tion. However real lenses do not follow the thin-lens model
exactly. For example the focus distance is specified from
the sensor plane rather than from the center of projection.
Furthermore the PSF kernels can change with aperture
shape, size and blur size. There are also other modelling
assumptions that do not always hold for real images e.g.
that the two defocused images are aligned and have the
same average intensity. For an accurate comparison of the
DFD models we need to satisfy these general assumptions.
This is done by performing geometric, radiometric and PSF
calibrations.

A. Focus Distance from Sensor Plane
In the calibration process we need to find the pairing

between depth and PSF for a given camera setting. The
camera parameters that we vary are the aperture size and
focus distance. In Sec. II-A we used the thin lens model
and assumed the object and sensor distances to be from the
center of projection which is at the center of the thin lens.
However for real lenses such a center of projection does not
exist. Furthermore the blur formation model assumes that the
sensor is moved between taking images. But in practice the
sensor to object distance is fixed and only the lens system
is moved. In our experiments we used a 50 mm prime lens
with focus marks on it. These focus distances indicate the
distance from the sensor plane to the plane in focus [13]. In
the calibration process the distance between the calibration
grid and the sensor position is measured manually to avoid
modelling the real lens.

B. Setup and Image Preprocessing
For PSF calibration, we use a grid of disks with a known

radius and spacing as the calibration image. The patches

containing disks are identified and the disk centers are
estimated by finding the centroid of those patches. The
advantage of using disk images over a checkerboard pattern
is that centroid estimation is more robust to defocus blur
than corner estimation especially when the aperture is non-
circular. In addition, the checkerboard is dominated by just
two orientations.

A 24 inch LED display of resolution 1920×1200 is used
in our work. We capture raw images using a Nikon D90
camera with a 50 mm prime-lens, under varying focus and
aperture settings, and placing the camera fronto-parallel to
the display at different distances. The processing pipeline
includes radiometric correction of the raw images, mag-
nification correction and alignment, and normalization of
the average image intensity. We render different calibration
patterns on the display as well as noise and natural image
texture patterns for the DFD experiments.

Fig. 2 shows the calibration and test images that were
captured in our experimental setup. We use the disk pattern
in Fig.2b for PSF estimation and the textured image in
Fig. 2c for depth estimation. We use images of three more
textured images, two of them from the Brodatz texture
library. Depth estimation accuracy for them is similar to the
1/f texture. The image of the grid of dots in Fig. 2a is used
for qualitative comparison only.

Single pixel (or dot) images approximate the impulse
function. To closely approximate the impulse function the
image has to be taken from beyond a certain distance.
With images of disks we do not have to strictly satisfy
such distance constraint. The image capturing distance also
becomes important when taking photos of the noise pattern
since we want the noise distribution to be satisfied in the
captured image. If the images are taken close-up then the
color filter array (CFA) of the display and size of display
pixel will modify the noise distribution. Furthermore images
of dot patterns require long exposure time. For large blurs,



single pixel images suffer from low SNR problem and may
not even be visible. Therefore it is more convenient to use
disk images. Noise patterns [3], [2] also suffer from similar
problems due to large blurs. Kee et al. [4] also used a disk
pattern. However their pattern is applicable for small amount
of blur. This is because they are estimating the intrinsic blur
of the lens system (i.e. blur that is present even when the
image is supposed to be in focus). The calibration pattern
proposed by Joshi et al. [1] can estimate relatively large
amounts of blur.

Our optimization approach is closest to [1], [5], [14].
However our optimization objective also uses the image
gradient and has boundary constraints. Using our calibration
approach we estimated blurs of up to size 77 × 77 pixels
(Fig. 3). For the camera settings used in the depth estimation
experiments the largest blur kernel is of size 51× 51.

Radiometric Correction: We take images of the LED
display with different textures rendered on it. The display
has certain radiometric characteristics and the image formed
on the sensor plane also has its own characteristics that
depend on the camera parameters. For different positions
these characteristics can also change to some extent. As
a result, a uniform scene will appear non-uniform in the
captured image. Most DFD models do not take this into
account and so the captured images need to be pre-processed
before applying any DFD model. In our experiments we
estimate the combined effect of the display and the camera’s
radiometric properties. For this we render a uniform color
on the display and capture images of it for the camera
parameters we are calibrating for. Then a quadric surface
is fit to the image with its center and curvature estimated
from the observed image. The model used in this work is:

R = (x− x0)2 + (y − y0)2

V = a+ bR+ cR2 + dR3 + eR4. (4)

This is fit using least squares with the ceres-solver soft-
ware [15]. The color filter array on the monitor and on
the camera sensor can produce undesirable Moiré patterns.
In our experiments we found that using a robust penalty
function to account for Moiré patterns does not significantly
change the quadric surface parameters. Estimating the center
of the quadric results in a better fit (in terms of reduction
in variance in the corrected image). For numerical stability
the data points need to be centered and scaled.

Magnification Correction and Alignment: Images taken
with different focus settings will have a difference in mag-
nification. DFD methods assume that the same pixel from
a pair of images corresponds to the same scene point.
Watanabe and Nayar in [16] used telecentric optics to keep
the magnification factor constant between the two differently
focused images. However most consumer lenses are not
telecentric. As a result the pair of defocused images need to
be registered before applying any blur estimation algorithm.

For magnification correction we find an affine transformation
between the disk centers for two different camera settings.

IV. PSF AND RELATIVE BLUR ESTIMATION

A. Blur PSF Estimation

After radiometric correction of the calibration image, 25
disk patches are extracted from the center of the image and
averaged. Then the latent sharp disk image is created based
on the projected disk center distance. The absolute PSF is
estimated by taking a sharp and a blur image pair and solving
the following Quadratic Programming (QP) problem.

argmin
h

n∑
j=1

λj‖fj ∗ (iS ∗ h− iB)‖22

+ λn+1‖∇h‖22 + λn+2‖R ◦ h‖2 (5)
subject to ‖h‖1 = 1 , h ≥ 0.

In the above optimization problem, iB is the observed
blurred image and iS is the sharp image. h is the PSF kernel
that is to be estimated. fj is a filter that is applied to the
images. In the experiments, we use f1 = δ, f2 = Gx, and
f3 = Gy , where G∗ is the spatial derivative of a Gaussian in
the horizontal and vertical directions. The matrix R – in the
element-wise product with the kernel h – is a spatial regu-
larization matrix which in this case is a parabola to ensure
that the kernel goes to zero near the edge. The constraints
ensure that the kernel is non-negative and preserves the
mean intensity after convolution. The optimization function
is similar to the one proposed by Ens and Lawrence except
in this case we formulate the problem in 2D and in the filter
space with explicit non-negativity and unity constraints. The
convolution operation and derivative of the kernel operators
can be expressed using a convolution matrix [17] and the
optimization problem can be solved using off-the-shelf QP
solvers (in our case Matlab’s quadprog).

Estimated PSFs are shown in Fig. 4 along with their
corresponding dot images. Since we use quadratic cost on
the gradient, it does not suppress small noise. It is possible
to use a second optimization stage consisting of iterative
shrinkage and thresholding to obtain less noisy and sharper
PSFs. However in our experiments we use simple median
filtering to get rid of most of the noise in the estimated
PSF. Compared to Joshi et al. [1], we use both the original
images and their gradients. We also have a compactness
constraint similar to [5], [14]. Ens and Lawrence assumed
a circularly symmetric kernel and formulated a 1D kernel
estimation problem. Like Joshi et al. they only considered
the reconstruction error of the image.

B. Relative Blur PSF Estimation

For the relative blur PSF estimation we take the absolute
PSFs and use Eq. 5 by assigning the sharper and blurrier
PSFs to iS and iB respectively. Here λn+2 = 0 to relax the
compactness constraint for the relative blur kernel. For more



robustness, the corresponding defocused disk images are
used along with the absolute PSFs. We can also add defocus
blurred images of textures to further improve relative blur
estimation. However we found the PSFs and disk pairs to be
sufficient. Adding additional images is equivalent to adding
the convolution matrices together.

V. PSF EVALUATION

The PSF estimation method is evaluated qualitatively
using images of a single pixel and quantitatively using
different DFD models. Relative blur estimation accuracy is
evaluated using the PSF reconstruction error and also depth
estimation accuracy.

A. Absolute PSF Estimation
Fig. 3 shows an example of the absolute blur estimation

process. Our method only requires a single defocused disk
image as shown in Fig. 3a. The true sharp image of the disk
is estimated from the size of the projected disk grid. This
is because the radius of the disks is a known fraction of
the distance between disk centers. Using Eq. 5 we get an
estimated PSF as shown in Fig. 3c which is similar to the
corresponding single pixel observed image shown in Fig. 3d.

Fig. 4 shows some more comparisons between observed
single pixel image and estimated PSFs. Fig. 4a shows the
observed image of a real point light source that is in focus.
Since the point source is in focus we would expect the image
i.e. the PSF to be a point. But due to the finite size of the
point source we do not see a point PSF. On the contrary, our
calibration disk based PSF estimation process can overcome
such limitations and estimate a PSF (Fig. 4b) that is closer to
the true PSF. Fig. 4c shows an example where a defocused
image is taken with a very small aperture. The small size of
the aperture creates diffraction effects which is captured in
the PSF estimated from the defocused disk image (Fig. 4d).

B. Relative Blur PSF Estimation
In Fig.5 we show examples of relative blur estimation

using the coded apertures proposed in Zhou et al. [11],
pillbox, and estimated absolute blur PSFs. For the synthetic
apertures, we take the pair of apertures and simulate the
variable focus configuration with focus distances 0.7 m
and 1.22 m, f/11, and ρ = 180 pixels-per-mm. The
samples correspond to inverse depths 1.6 D and 0.6 D. The
estimated blurred PSFs (right-most column) are obtained
by convolving the sharper PSFs (left-most column) with
the estimated relative blurs (3rd column). We can see that
the estimated blurrier PSFs are reasonably close to the true
blurrier PSFs (2nd column). For instance for the coded aper-
tures the relative blur PSFs capture the hole in the aperture,
orientation and boundary of the hole correctly. For the real
PSF (last row of Fig. 5), the shape of the aperture-stop
and the diffraction effects are also captured accurately. A
Gaussian approximation or circularly symmetric constraint
would not be able to model such complex shapes.

Observed image of a Estimated PSF from
single display pixel defocused disk images

(a) Distance 1.5m, focused at 1.5m,
f/11. Image size 21× 21

(b) Distance 1.5m, focused at 1.5m,
f/11. Image size 21× 21

(c) Distance 1.5m, focused at 0.5m,
f/22, Image size 47× 47

(d) Distance 1.5m, focused at 0.5m,
f/22, Image size 47× 47

Figure 4: (a) and (c) are examples of PSFs extracted from a
single pixel on the computer monitor (i.e. similar to Fig. 2a).
(b) and (d) show the corresponding estimated PSFs from a
calibration grid of disks (i.e. similar to Fig. 2b). For (a) and
(b) the camera is focused on the object and in (c) and (d)
the camera is defocused. When the PSF is a delta function
(i.e. (a) and (b) where the camera is focused on the object),
the estimation process finds a sharper PSF than the observed
single pixel image. Diffraction effects such as the valley in
(c) are also captured in the estimated PSF in (d).

C. DFD using estimated PSFs

In this section we evaluate the quality of the estimated
PSFs and the relative blur kernels using DFD with real and
synthetically defocused images. For the real experiments,
we capture images of fronto-parallel textures for different
object-to-sensor distances and camera settings. The images
are captured simultaneously with the calibration pattern
discussed in the previous section. This allows us to find
the corresponding PSFs for the defocused images. For this
experiment we use the variable focus configuration with the
camera settings from the previous section.

We use 27 object-to-sensor distances ranging between
0.61 m and 1.5 m spaced uniformly (roughly) in inverse



(a) Observed blurred disk image (b) Estimated sharp disk (c) Estimated PSF from (a) and (b) (d) Observed pixel (green channel)

Figure 3: Example of PSF estimation from observed blurred disk image. (a) Observed disk (199×199 pixels), (b) estimated
sharp disk image based on the projected size of the disk grid, (c) PSF estimated using Eq. 5, and (d) image of a single
pixel (green channel). Object to sensor distance is 1.5 m and focus distance 0.5 m, and f-number f/11. The size of the PSF
kernel is 77 × 77. Note that diffraction effects (e.g.ringing, brighter corners, etc.) as well as the aperture-stop’s shape are
also captured in the estimated PSF.

depth space. We choose uniform subdivision in inverse
depth space because the blur radius changes linearly with
inverse depth (recall Eq. 2). In practice, the relationship is
approximately linear because we are moving the lens instead
of the sensor. The captured textured images go through
the same pre-processing steps as the calibration images,
namely – radiometric correction, scaling and alignment, and
intensity normalization by the mean intensity.

For the synthetic experiments, we use the coded aperture
pair proposed in [11]. Using the aperture templates we
generate a set of PSF kernels of different sizes (using Eq.
2) and orientation (based on the sign of the blur), and their
corresponding relative blur kernels. The camera parameters
are the same as in the relative blur experiment. Similar to
the real experiment, the scene is considered to be within
0.61 m to 1.5 m and therefore extends on both sides of
the focal planes. A 512 × 512 image of 1/f noise texture
is synthetically blurred with the PSF pair that is being used
for evaluation. This is followed by adding additive Gaussian
noise σn = 2% to the blurred images.

In all the experiments, depth estimation is performed by
choosing the appropriate PSFs for every depth hypothesis
and evaluating the model cost. The per-pixel cost is then
averaged over a finite window and the depth label is chosen
to be the one that minimizes the cost at every pixel.

For evaluating the relative blur kernel estimation accuracy,
we consider Zhou et al’s coded aperture pair [11]. Fig.
5 showed a couple of the example aperture pairs for this
case. Fig. 6a shows the depth estimation accuracy using the
estimated relative blur kernel and the deconvolution method
from [11] with the ground-truth PSF pairs.

Fig. 6b shows an example of depth estimation with real
defocused images and the estimated relative blurs and the
absolute blurs (BET). In both cases the true depth is within

two sigma of the estimated mean. In [12] we use the
estimated absolute and relative blurs to evaluate different
DFD models.

VI. CONCLUSION

In this paper we presented a simple and robust approach
for absolute blur and relative blur kernel estimation. Es-
timated absolute blurs were qualitatively compared with
corresponding single pixel images. We showed that our
approach is able to estimate blur kernels ranging from single
pixel to reasonably large kernels (e.g. 77 × 77). We also
showed results for relative blur kernel estimation. To our
knowledge besides the work by Ens and Lawrence there has
not been any work on relative blur kernel estimation. Fur-
thermore Ens and Lawrence assumes circularly symmetric
relative blur kernels but ours is more flexible and we have
demonstrated its effectiveness using complex coded aperture
pair [11] as well as conventional aperture. We avoided
issues with real lens modelling by measuring distance from
the sensor plane and performing calibration for each of
those distances. We have experimentally showed that our
estimated PSFs and relative blurs can be used for depth from
defocused.
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Sharper PSF Blurrier PSF Estimated Relative Blur Reconstructed Blurrier PSF

Figure 5: Examples of relative blur estimated from coded aperture [11] (first two rows), pillbox (third row), and real PSF
(last row), and reconstructing the blurrier PSF from the sharper PSF using the estimated relative blur. Top row corresponds
to inverse depth 1.6 D and the rest to 0.6 D with variable focus distances 0.7 m and 1.22 m and f/11. The reconstructed
PSFs correctly capture the open and closed shape of the coded apertures. The corresponding depth estimation is shown in
Fig. 6a (coded aperture) and Fig. 6b (real PSF). More examples can be found at http://cim.mcgill.ca/∼fmannan/relblur.html
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Figure 6: Examples of depth estimation using the coded aperture pair from [11] and estimated PSFs, with the same camera
and scene configuration as Fig. 5. a) Shows that the relative blur estimated from the coded aperture gives similar results to
the deconvolution based method with ground-truth PSFs [11]. (b) shows that the estimated PSFs and their relative blur can
recover depth under most cases.
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