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1 Introduction

Cerebral blood vessels can help differentiate normal from severely pathological anatomy. The identifica-

tion of vessel lesions and malformations in medical images strongly correlates with risk factors for arterial

embolisms (vascular blockage), ischemic strokes, and aneurysms, all of which are relatively common con-

ditions that can be debilitating and fatal [17]. Complications in the study of medical images arise from

the fact that they typically are large and dense volumes, part of vast data sets. They are often cluttered

with a variety of structures and tissue types (for example blood vessels, skin, bone, cerebrospinal fluid,

background, white and grey matter tissue) that can vary greatly from one patient to another. More-

over, blood vessels can be dimmed or rendered invisible as the result of a limited acquisition resolution,

sampling artifacts, spatial aliasing, and noise, and vasculature networks can thereby be broken. These

difficulties make the identification and study of blood vessels laborious, and suggest the involvement

of image processing techniques to assist clinicians in the reconstruction, analysis, and interpretation of

cerebrovascular images. [17]

In computer vision, image segmentation is defined as the process of partitioning an image into

regions of similarity. Segmentation methods can support the clinician in extracting neurovasculature

from medical images. These vascular representations are helpful in the development of safer treatments

for cerebral conditions, for a more efficient preoperative planning, operating room (OR) and postoperative

monitoring, and for intra- and inter-patient comparative studies [8, 10]. Common features of interest

include vessel branch points, quantification of the spatial relationship between vessels, vessel segment

extraction, vessel diameter measurements, and vessel complexity assessment. When a sequence of images

is available, it can also be useful to quantify changes in these quantities over time or across patients [23],

offering a lot of research potential.

The main focus of this literature review is to present a selection of key articles covering different

approaches employed in the vessel segmentation literature. Basic principles of neuroanatomy and neu-

rovascular imaging are first introduced in Section 2. The selected articles are then discussed in Section 3

and divided into four subsections: active contours in Section 3.1, curvilinear filters in Section 3.2, model-

based approaches in Section 3.3, and histogram-based approaches in Section 3.4. Concluding remarks

are found in Section 4.

2 Neuroanatomy and Vessel Imaging

The human brain has a dense and complex structure. Since this literature review is highly constrained in

length and only concerns neurovasculature segmentation, many anatomical parts and details are omitted

in order to favour the major vascular networks and related structures. These networks are largely studied

and often used clinically to differentiate normal from pathological anatomy, making them interesting for

applying segmentation algorithms. Neuroanatomical and neuroimaging information presented in this
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section is taken from Morris’ book on Practical neuroangiography [15] and Osborn’s book on Diagnostic

cerebral angiography [17]. Additional neuroimaging content is taken from Reimer and Landwehr [18].

2.1 Neuroanatomy

The brain is surrounded and protected by many layers. Starting from the cortex and going outwards,

they are the pia mater, the arachnoid, the dura mater, the skull, the periosteum and finally the skin.

Two of these layers are highly vascularized. The pia mater allows blood vessels to pass through and

nourish the brain whereas the dura mater is a sac that among other functions, carries blood back from

the brain towards the heart.

The human brain can be divided into three major parts: the forebrain or prosencephalon, the cere-

bellum or mesencephalon, and the hindbrain or rhombencephalon, as seen in Fig. 1. This division follows

a neuroanatomist’ classification of brain structures, from the most evolved to the most primitive.

(a) Human brain (b) Forebrain (c) Midbrain (d) Hindbrain

Figure 1: The human brain divided into three main parts. (McGill’s Brain From Top To Bottom)

The brain is a highly vascularized organ. The previous section indicated that its superficial layers

carry blood to and out of the brain. However, a more complex neurovasculature network lies within the

brain itself. Three main arteries vascularize the brain with freshly oxygenated blood coming from the

heart: the anterior, the middle, and the posterior cerebral arteries. They connect with each other at the

base of the brain in the circle of Willis, a well-known anatomical structure. The anterior communicating

artery links the two anterior cerebral arteries, and the two posterior communicating arteries link the

carotid artery to the posterior cerebral artery.

The drainage of deoxygenated blood from the brain is done through a complex venous network.

There is no equivalent to the well-structured circle of Willis for this venous network. Instead, at the

base of the brain, all venous systems drain towards a large venous sinus and finally to the jugular vein,

where deoxygenated blood is carried back to the heart.

2.2 Brain Vessel Imaging

Invasive angiography techniques that use catheters and radioactive contrast agents and dyes has long

been the gold standard. However, many of these methods have been shown to pose a health risk. For

instance, originally x-ray neuroimaging was performed along with the injection of a contrast agent,

Thorotrast, a highly carcinogenic radioactive compound that increased risk factors for cancer by 100

times.

The development of non-invasive vascular imaging techniques provided the medical community with

powerful tools that posed a significantly lower threat to a patient’s life, which in turn directly stimulated

clinical research. In particular, the development of the three main noninvasive 3D neurovascular imaging

2



modalities: magnetic resonance imaging (MR), X-ray Computed tomography (CT) and ultrasound (US).

These imaging modalities also come in different flavours but they are not described here for sake of length.

MRI Magnetic resonance imaging produces cross-sectional images (slices) of the body using magneti-

zation and radio waves. When used for imaging vessels, the term MRA for magnetic resonance angiog-

raphy is instead used. The physical principle behind the MRI is that charged particles emit radiation

as their magnetization is changed. Our body is largely composed of water molecules – each containing

two protons – distributed in different structures and in various densities. If there was therefore a way

to magnetize the protons contained in water molecules and listen for their radiation signal, structural

information could be revealed. In MRI, the brain is exposed to a strong magnetic field that aligns the

magnetization of the water protons. By keeping this magnetic field constant, an electromagnetic field is

turned on and then off, causing the protons to align in a new direction relative to the field and then to

relax back to their initial magnetization. As they do so, they emit signals that can be detected. The

electromagnetic field can be tuned to different frequencies and different emitting signals can be listened

to in order to give contrast to different structures. By varying the direction of the electromagnetic field,

other slices of the brain can be obtained. The resulting 3D brain volume is obtained as an assembly

(sometimes requiring interpolation) of all the cross-sectional slices. MRI is arguably the most useful – it

can achieve sub-millimetre accuracy – and safest noninvasive modern neurovascular imaging modality.

CT Computed tomography imaging produces cross-sectional images of the body using x-ray radiation.

An x-ray beam can penetrate solid objects and the denser a material is, the more radiation will be

blocked. The remaining rays that pass through the object can be captured and from them an image can

be acquired. Structure in this image directly correlates with regions of different densities. For instance,

bone has a greater density than most anatomical structures and thus has a high contrast in x-ray images.

A CT brain scan works by shooting these x-ray beams through multiple planes surrounding the brain,

which are then combined to form a 3D volume. In CT angiography (CTA), a dye is injected that

binds to specific structures in the body – blood vessel, for instance – such as to manipulate the signal

from the x-ray beams. The resulting images generally have a higher resolution than in MRA. However,

the combination of the dye and of the x-ray imaging exposes the patient to a strong dose of radiation

and potentially carcinogenic agents. The use of a CTA in neurovasculature imaging is therefore only

prescribed when absolutely necessary.

US Ultrasound imaging produces produces 2D images of body structures using sound waves. High-

frequency sound waves are aimed at a structure of interest and the resulting echo is recorded. The echo

time for the propagating front wave gives estimates about the density of the underlying tissue, which can

be reconstructed as a 2D image. US is impractical for neuroimaging since the thick layer of the skull and

the numerous structures of various density and geometry that compose the brain can produce a noisy

signal that is hard to interpret. As a result, the imaging must be done directly on the skin and closely

follows its topology near the structure of interest, such that US devices are typically hand-manipulated by

a human. Nevertheless, US is a fast and extremely safe imaging modality, and developments in US image

reconstruction makes it useful for quickly assessing certain arterial pathologies, including atherosclerosis.

Moreover, 3D images can be obtained by reconstructing multiple views from 2D US images.
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3 Segmentation Schemes

3.1 Active Contour Segmentation

Active contours evolve a deformable model over an image according to internal – given by the contour

itself – and external forces – given by the image – in order to extract object boundaries. This section

presents two main subclasses of active contours: parametric and implicit active contours. Parametric

active contours or snakes use an explicitly evolved and possibly manually assisted deformable contour.

In contrast, implicit active contours define a contour as the zero level of a higher dimensional manifold.

The evolution of the contour is thus carried on indirectly, through operations on the manifold itself.

3.1.1 Standard parametric snakes

Parametric snakes models are a class of methods that define a 2D contour v(s, t) that is time-varying

over t and parameterized by s ∈ [0, 1]. The boundary condition v(0, t) = v(1, t) is typically used to

produce a closed snakes. An internal energy term S(v) is defined to characterize the deformation of

the snakes as that of an elastic contour S(v) =
∫ 1
0 w1(s)

∣∣∂v
∂s

∣∣+w2(s)
∣∣∣∂2v
∂s2

∣∣∣ ds, where the physical weight

function w1 controls stretching and w2 controls bending at the parametric coordinate s. An external

energy term P(v) is constructed based on a priori knowledge of the image and of the application at

hand. P is defined by the scalar potential function P =
∫ 1
0 P (v(s, t))ds. The minima of the potential

function corresponds with the image feature of interest. For a snakes that clings to edges, a potential

of the form P (x, y) = − ||∇ [Gσ ∗ I(x, y)]|| is used, where Gσ is a Gaussian smoothing filter of standard

deviation σ. Combined together, the internal and external energy terms yield the energy functional

E(v) = S(v) + P(v) (1)

=

∫ 1

0

(
w1(s)

∣∣∣∣∂v∂s
∣∣∣∣+ w2(s)

∣∣∣∣∂2v

∂s2

∣∣∣∣+ P (v(s, t))

)
ds. (2)

Although the energy functional E can be minimized statically, a dynamic system formulation is more

flexible and allows a user to directly interact with the snakes as it evolves to equilibrium. The boundary

of the snake is therefore evolved by the Euler-Lagrange equations of the energy functional:

µ
∂2v

∂t2
+ γ

∂v

∂t
− ∂

∂s

(
w1

∂v

∂s

)
+

∂2

∂s2

(
w2

∂2v

∂s2

)
= −∇P (v(s, t)). (3)

which can be solved for numerically using for instance a semi-implicit Euler method.

3.1.2 Topology Adaptive Snakes (McInerney and Terzopoulos [14])

McInerney and Terzopoulos [14] present an explicit active contour algorithm that extends classical para-

metric snakes and can segment tubular structures in medical images. This algorithm has been subse-

quently cited and used extensively in the medical image processing literature for segmenting neurovas-

culature [10]. The topology adaptive snakes or T-snakes are developed to overcome limitations of the

standard snakes: 1) their oversensitivity to contour initialization and 2) the topological inflexibility such

that long vessels with branching, protrusions, merging and fragmentation are difficult to extract.

T-snakes are implemented as a discretized form of the standard snakes described in Section 3.1.1.

At time t, the T-snake is represented as a connected set of N nodes xi(t) with x1(t) = xN (t). The

parameterization is embedded in a regular spatial grid composed of triangular cells. The resulting space
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is an affine cell image decomposition or ACID ; interestingly, McInerney and Terzopoulos [14] call the

resulting combination snakes in ACID. The size of the grid cells can be decreased in order to better

approximate the contour of the object of interest. The T-snake is evolved according to a discrete and

simplified version of Eq. 3, resulting in a set of first-order ordinary differential equations of motion

γiẋi + aαi + bβi = ρi + pfi (4)

where ẋi is the velocity of node i and γi is a damping coefficient. The left hand side of Eq. 4 represent

internal forces whereas the right hand side represents external forces. aαi and bβi respectively control

the resistance of the contour to stretching and to bending deformations. ρi is an inflation force that

pushes the node towards the normal to the contour, by a magnitude proportional to the image intensity

at xi. pfi is a force proportional to the gradient of the scalar potential defined in Section 3.1.1 that stops

the contour at significant edges. Eq. 4 is solved for using a simple forward Euler approach, xi(t+∆t) =

xi(t) +
∆t
γ (aαi(t) + bβi(t)− ρi(t)− fi(t)). Although this form is typically unstable, McInerney and

Terzopoulos [14] mention that a large range of step sizes produce a stable behaviour.

As the T-snake is evolved, topological transformations need to be performed under certain condi-

tions. This is the case when a T-snake collides with itself or with another T-snake, or when a T-snake

breaks into multiple parts. The ACID framework allows to handle these transformations consistently.

Whenever collisions or fractures of the T-snake are detected, a topological transformation is performed

and the correspondence of the T-snake is re-established with the ACID grid. The equilibrium state for

the evolution of a T-snake is reached when all of its nodes have been inactive for a given number of

deformation steps.

3.1.3 Implicit Curve Evolution (Lorigo et al. [13])

The topological invariability of standard snakes described in Section 3.1.1 was addressed by McInerney

and Terzopoulos [14] in the previous section. Although they work reasonably well in practice, T-snakes

are based on heuristics and depend on the choice of the embedding space partition to work properly. Noise

tends to generate spurious local minima that hinder the contour evolution. Geodesic active contours,

on the other hand, offer a mathematically elegant paradigm that handles topological changes naturally

and is independent of parameterization.

Geodesic active contours consider a curve as an interface between two media. When using a level-sets

formulation, instead of evolving an n-dimensional curve C(q) to segment object boundaries, a manifold

of codimension one ((n + 1)-dimensional space) of which C(q) is the zero level-set is used. This higher

dimensional manifold offers “room” for the contour deformation to undergo topological changes smoothly,

without requiring a spatial reparameterization, as shown in Fig. 2.

Let C(q) : [0, 1] → R2 be a parameterized planar curve that is deformed to match an object boundary.

An energy functional can be designed that controls the smoothness of the contour and makes it cling to

the boundary: ∫ 1

0
g(|∇I(C(q))|)

∣∣C ′(q)
∣∣ dq (5)

where g is a strictly decreasing function of the image gradient such that g → 0 as r → 0, e.g. g = 1
1+|∇I|2 .

Since C is deformed over time t, the Euler-Lagrange equations can be computed and yield the curve

evolution equation [2]

Ct = gκN− (∇g ·N)N, (6)
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(a) Curve embedding (b) (c) (d)

Figure 2: Geodesic active contours naturally handle topological changes. a) shows two approaching and
merging curves (in red) as the zero level set of a higher dimensional manifold. b)-d) show the evolution
of multiple contours as merging zero level-sets. (Adapted from Deschamps [4])

where κ is the Euclidean curvature and N is the unit inward normal to the curve. By embedding the

curve as the zero level-set of a two-dimensional surface u : R2 → R, the signed distance function to C,

the following evolution equation is equivalent to Eq. 6:

ut = gκ |∇u|+∇g · ∇u. (7)

Given a cost function g, the surface u in Eq. 7 can be evolved to segment object boundaries. The

resulting contour can be obtained by extracting the zero level-set of the final surface.

Lorigo et al. [13] use a codimension-two level-set scheme for segmenting blood vessels. That is, rather

than evolving a planar curve in 2D (codimension-one), it is evolved in 3D. The geodesic active contour

approach does not directly hold and a more general form of manifold evolution is therefore required.

First, Eq. 6 is generalized to [13]

Ct = κN−Πd (8)

where Π is the projection operator onto the normal space ofC, and d is a cost vector field in R3 analogous

to g in Eq. 6. Lorigo et al. [13] define an embedding space v that is the distance function to C. They

construct an isolevel set Γϵ = {x|v(x) = ϵ} where ϵ is small and positive, that is Γϵ is a thin tube around

C, made to represent a blood vessel. The larger principal curvature of this tube depends on ϵ while

the smaller principal curvature depends on C. The smaller principal curvature λ(∇v(x, t),∇2v(x, t) is

therefore used as a measure of manifold curvature. The evolution of the embedding space in Eq. 7 then

becomes vt = λ(∇v,∇2v) +∇v · d.
A cost vector field d = H ∇I

|∇I| , where ∇I is the image gradient and H is the Hessian, is defined. This

vector field stops the contour evolution at specific curvature maxima. The equation of the embedding

space then becomes

vt = λ(∇v,∇2v) +
g′

g

′
∇v ·H ∇I

|∇I|
. (9)

The resulting contour is then obtained by extracting the zero level-set of the embedding space vt when

it reaches equilibrium, that is when the volume of the segmented region changes less the some specified

percentage of total volume across a specified number of iterations. The radius of the vessel can be

estimated as the inverse of principal curvature, i.e. r = 1/κ.
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3.1.4 Shape Driven Flow (Nain et al. [16])

In practice, the active contours in Lorigo et al. [13] need to be initialized near the neurovasculature

network. Moreover, the choice of ϵ in the definition of a tube as an isolevel set embedding determines

the width of blood vessels, making the curve evolution largely dependent on the scale at which vessels

appear. The region growing can fail when attempting to model vessels that exist at the inner of scale of

the data and can be difficult to control.

Nain et al. [16] address some of these issues by proposing a level set technique that uses a soft shape

prior rather than a rigid model of tubular structure. The level set formulation is similar to the one

introduced in Eq. 8, where Π = ϕ is a cost or speed term based on the underlying image, alike g in

Lorigo et al. [13], and d = N. The novelty resides in the introduction of shape filters for determining

areas where the contour is widening and potentially leaking. The image gradient being highly sensible

to noise, they suggest to use a local filter that is computed at a scale larger than that of the derivative.

Filtering is carried out in a spherical domain, a ball B(x, r) of radius r at each point x of the contour C,

where r is an upper bound on the expected width of the vessel. The filter is defined as the percentage

of the N points yi in B(x, r) that fall inside the contour R:

ϵ1(x) =
1

N

∑
yi∈B(x,r)

χ(yi) (10)

where χ(y) =

1 for yi ∈ R

0 for yi ̸∈ R
. For a radius r is close to the width of the vessel, most neighbouring points

on the contour will have the same response to the ϵ1 filter since locally the same percentage of neighbours

fall within the filter radius. On the other hand, in a location x where the contour starts leaking, points

in the neighborhood of x will have a large ϵ1 value since the measure is high for widening regions.

These regions correspond to non-tubular structures and should be penalized. These requirements are

incorporated in a combined filter

ϵ2(x) =

 1

N

∑
yi∈B(x,r)

χ(yi)

2

+
2

N

∑
yi∈B(x,r)

χ(yi)

 ∑
yj∈B(yi,r)

χ(yj)

 . (11)

The soft shape combined filter ϵ2 yields the final curve evolution equation:

Ct = κN− ϕN+ αϵ2(x, p)N, (12)

where α is a parameter that controls the amount of penalty desired for non-tubular structures. In

practice, ϵ2 is normalized to the range [0, 1]. A value of α ≤ 0.65 is shown to provide satisfactory vessel

segmentations. Larger values of α tend to erode the contour near branch points, i.e. only nearly straight

and idealized vessels are preserved. Nain et al. [16] provide examples where the soft shape prior prevents

a traditional active contour from leaking and results in more regular segmentations that would otherwise

require extensive manual corrections.

3.2 Filter-based Segmentation

Filter-based segmentation methods use the response obtained from the convolution of an image with a

filter to extract blood vessels. By selecting appropriate filters, different structure types can be revealed.
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This section covers a selection of segmentation approaches that utilize image filters to derive a measure

of similarity to vascular structures and extract them.

3.2.1 Notes on the Hessian

The eigenvalues of the Hessian matrix can be used to derive information about the local geometry in

the neighbourhood of a vessel. A second order Taylor expansion of an image I with spatial coordinate x

gives I(x+∆x) = I(x)+∇I(x)∆x+ 1
2∆xTH(I(x))∆x+O(∆x3), where ∇I(x) is the gradient of I at x

and H(I(x)) is the Hessian of I at x. H ∈ R3×3 is the matrix composed of the second-order derivatives of

I. When ∇I(x) is small, as is the case on the centerline of a blood vessel, the Hessian fully describes, up

to second order, the local variation of the intensity in the direction of the associated eigenvectors. More

precisely, the gradient describes the contours of the vessels whereas the Hessian gives information about

the centerline, the axis, and the cross-section of the vessels. The Hessian matrix H can be computed by

convolving the image with the second partial derivatives of a Gaussian function G(x, σ) = exp
(
− |x|2

2σ2

)
,

due to the associative properties of the convolution operator for differentiation. This decomposition

has the advantage of reducing the amount of computation needed from O(n3) to O(3n). Due to the

equality of mixed partials theorem, Ixy = Iyx, Ixz = Izx, Iyz = Izy, and therefore H is symmetric .

This symmetry has important properties. The eigenvalues of H are real and its eigenvectors form an

orthogonal basis. H being a second-order operator, its eigenvalues λ1, λ2, λ3 and associated eigenvectors

e1, e2, e3 directly relate to the principal curvatures at x and can be used to locate and characterize the

geometry of blood vessels in an intensity image, as described in Section 3.2.2.

3.2.2 A Generalized Measure of Vesselness (Sato et al. [19])

Ideal blood vessels are generally represented as contrasting tubes with an isotropic Gaussian cross-section

and with no centerline curvature. The original work by Sato et al. [19] manipulates this idealized model

with respect to the Hessian operator to derive a measure of vesselness and segment blood vessels at

different scales. This work is one out of many early Hessian-based vessel segmentation approaches that

blossomed at the end of the 1990’s [10].

Sato et al. [19] construct a vesselness measure based on the Hessian eigenvectors e1, e2, e3 and respec-

tive eigenvalues λ1, λ2, λ3. The image is convolved with the second derivative of an isotropic Gaussian,

G(x, σf ) = exp

(
− |x|2

2σ2
f

)
, (13)

such that filter responses can be tuned to a specific width of 3D line. The eigenvalues of the Hessian

matrix are assumed to be sorted by increasing value such that λ1 ≥ λ2 ≥ λ3 and where λ2, λ3 ≤ 0.

Sato et al. [19] suggest heuristics based on the Hessian of the idealized vascular model. e1 is oriented

along the vessel centerline and its corresponding eigenvalue is small (λ1 ≈ 0) and e2, e3 span the cross-

sectional plane of the vessel. The vessel is bright and isotropic along its cross-section, so both λ2 and

λ3 are close, negative and have a large magnitude (λ2 ≈ λ3 ≪ 0). Again based on idealized structural

models, other local structures can be characterized by the Hessian eigenvalues and are summarized

in Table 1. Following these observations, a measure λ123 is developed that can discriminate between
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λ1 λ2 λ3 Local Structure 2nd Order Ellipsoid Examples

±ϵ ±ϵ ±ϵ noisy blob noise

±ϵ ±ϵ ▼ plate (bright) line cortex, skin
±ϵ ±ϵ ▲ plate (dark)

±ϵ ▼ ▼ tube (bright) disk vessel, bronchus
±ϵ ▲ ▲ tube (dark)

▼ ▼ ▼ blob (bright) blob nodule
▲ ▲ ▲ blob (dark)

Table 1: Hessian eigenvalues and their geometrical interpretation [19, 7, 12, 5]. The ▲symbol represents
an eigenvalue much greater than 0, λi ≫ 0; the ▼symbol represents an eigenvalue much less than 0,
λi ≪ 0; ϵ represents an eigenvalue approximately zero, λi ≈ 0.

line-like, plate-like, and vessel-like structures:

λ123 =


|λ3|

(
λ2
λ3

)γ23 (
1 + λ1

|λ2|

)γ12
for λ3 < λ2 < λ1 ≤ 0

|λ3|
(
λ2
λ3

)γ23 (
1− α λ1

|λ2|

)γ12
for λ3 < λ2 < 0 < λ1 <

|λ2|
α

0 otherwise,

(14)

where γ23 and γ12 control the sharpness of the selectivity for the cross-section isotropy. A bright sheet-

like structure will have λ3 ≪ λ2 ≈ 0, which yields λ123 ≈ 0. A nonlinear structure will have λ1 ̸= 0,

also implying a minimal vesselness measure for both λ1 < 0 and λ1 > 0. A bright line-like structure will

have λ3 ≈ λ2 ≪ 0, thus λ123 is maximal with λ123 ≈ |λ3|.
The integration of a multiscale measure M(x) is done by combining filter responses tuned to different

line widths σf in Eq. 13. The line width σf maximizing the measure λ123 is selected. In practice, Sato

et al. [19] use discretized values for σf on the basis of the width range of the anatomical structure of

interest.

Sato et al. [19] place strict conditions on the Hessian eigenvalues. Only isotropic cross-sections are

considered. Moreover, the Hessian eigenvalues are sorted by increasing value rather than absolute value,

resulting in asymmetrical heuristics for defining bright and dark structures. A more important issue is

that they fail to combine the vesselness measure in a neighborhood to achieve vessel completeness and

connectivity.

3.2.3 Formalizing Scale and Hessian Eigenvalues (Krissian et al. [9])

Sato et al. [19] provide little mathematical formalism in the interpretation of the Hessian eigenvalues.

Their vesselness measure is based on heuristics and on an experimental study of simple structure pro-

totypes. Although Table 1 gives a feel for the relationship in between different eigenvalues for these

structures, it is not clear how they transition from one to another.

Further work by Krissian et al. [9] addresses this issue by deriving an analytical expression for the

eigenvalues of three different vessel models that together capture a large part of the structural variability

found in blood vessels. 1) A cylindrical circular model describes the ideal blood vessel used by Sato et al.

[19] (λ3 ≈ λ2 ≪ λ1 ≈ 0). This model is based on an isotropic 2D Gaussian intensity profile. 2) A toroidal
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circular model extends the cylindrical circular model by allowing curvature in the centerline direction

(λ3 ≈ λ2 ≪ λ1 ̸= 0). This model is based on the intensity profile

I0(x) = exp

(
−

(
R−

√
x2+y2

)2
+z2

2σ2
0

)
. (15)

3) A cylindrical elliptical model extends the cylindrical circular model by providing anisotropy in the

cross-section (λ3 ≤ λ2 ≪ λ1 ≈ 0). The model is based on the intensity profile

I0(x) = exp

[
−1

2

(
x
σx

)2
+
(

y
σy

)2]
. (16)

This study shows that in general, eigenvalues are very sensitive to the vessel curvature in the centerline

direction and to elliptical cross-sections, two variations that are ignored by Sato et al. [19]. Moreover,

the estimation of the cross-sectional plane spanned by the two eigenvectors e2, e3 is shown to be stable to

noise and different vessel geometries. This suggests the use of the Hessian eigenvalues for discriminating

vessel-like structures from other structures, alike the work by Sato et al. [19], but with the addition of

the Hessian eigenvectors and the image gradient to extract vessel centerlines. Based on these findings,

an algorithm for vessel centerline extraction and vessel radius estimation is developed. The algorithm

is divided into three principal steps: a) a vessel response function is evaluated at different scales, b) the

local maxima of this response function is found, and c) vessels are reconstructed using centerline and

size information.

The vesselness response function Rt(x) at a point x is a radial projection of the image gradient on a

circle of radius τ
√
t in the cross-sectional plane spanned by the eigenvectors (e2, e3):

Rt(x) =
1

2π

∫ 2π

0
−∇I(x+ τ

√
tvθ) · vθdθ, (17)

where vθ = cos(θ)e2+sin(θ)e3. The purpose of the parameter τ is to align the circle boundary with the

frontier of the vessel at a scale that yields the maximal response.

The computation of centerline extrema is done via the marching lines algorithm [22], an isocontour

extraction method. The algorithm transforms the 3D volume into an implicit volume R3 → R defined

by the response of the kernel defined in Eq. 17 at each voxel x. At x, the algorithm can extract a line

by interpreting the response function in a neighborhood. For instance, a small response on the left and

right side of a location where a large response is found indicates that x is a local extrema and potentially

part of a vessel centerline.

Finally, a hysteresis thresholding is applied such that non-tubular structures and noise are removed.

Short segments that do not change the topology of the image are then also removed in order to get rid

of spurious details. The centerlines are then smoothed out to give a better visualization. More complete

vessels are reconstructed by using the scale maxima σ found during the detection of centerline extrema.

Following this work, several points remain to be addressed. The circular cross-section is an assump-

tion that has yet to be dropped. Moreover, the extrema detection method will poorly work in regions

where non-vascular structures have a high intensity gradient, and near vessel edges. No subsequent

vessel reconnection is carried out in order to reconstruct the vasculature network. This reconnection

could be performed straightforwardly after the vessel extraction process but this would be costly since

neighbouring vessel segments can be discovered independently and are disconnected from one another

and possibly numerous.

10



3.2.4 Vessel Centerline as Intensity Ridges (Aylward and Bullitt [1])

Ridge-based methods embed an N -dimensional image in (N + 1)-dimensional space where the extra

dimension is the intensity. By doing this, a 2D vessel image becomes a ridge in a 3D image where

intensity maps to height, as shown in Fig. 3 c) and d).

(a) 2D image (b) Intensity map

Figure 3: Vessels seen as ridges in an intensity map. (Adapted from Aylward and Bullitt [1])

Ridge traversal is employed by Aylward and Bullitt [1] for segmenting blood vessels. This work is

motivated by the observation that identifying blood vessels as a single entity, a ridge, is less sensitive

to image noise than identifying them as a combination of separate entities, two edges. Indeed, edge-

detection is generally performed using smaller-scale measures and the requirement of identifying two

boundaries can potentially reject many true positives. They also point out that the vessel centerline can

be located as the high point in an intensity ridge. This high point can be used for subsequent processing

to stabilize the detection of vessel boundaries and to resolve boundary ambiguities.

Analogously to Sato et al. [19] and Krissian et al. [9], Aylward and Bullitt [1] use Hessian matrix

eigenvalues to help distinguish between local structures in the image, more precisely ridges, valleys,

saddles, planes, and spheres (blobs). In the development of their methods, Aylward and Bullitt [1]

assume that the blood vessel are brighter than the background. They define three conditions that must

hold for a point x to be located on the centerline of a vessel: a) x is located on a ridge, i.e. λ3 ≤ λ2 < 0,

b) x is an extrema, i.e. e2 · ∇I = e3 · ∇I = ϵ2 ≈ 0, and c) the ridge is central to an object that has

a nearly circular cross-section, i.e. λ2
λ3

≥ 1 − ϵ3 ≈ 0. The first condition implies that the eigenvectors

e2, e3 are the orthogonal directions normal to the ridge and that e1 approximates a tangent to the ridge.

The second condition implies that the image gradient ∇I points towards the intensity maxima which, in

the intensity height map, roughly points in the direction of e1 which is orthogonal to e2, e3. The value

of ϵ2, ϵ3 directly controls how close to an idealized tubular vessel a particular structure must be to be

characterized as such.

The focus of the work of Aylward and Bullitt [1] is therefore to determine the remaining two ridge

parameters that will satisfy the ridge conditions. That is, x, a point located on the centerline of a vessel,

i.e. on a ridge, and σ, the scale at which computations are made, and thus the width of the vessel at

x. In doing so, they develop two algorithms: one being the localization of x given a fixed σ, the second

being a dynamic optimization of σ while localizing x. Initial ridge points x are found by thresholding the

image based on the assumption that the blood vessels are brighter than the background. Thresholding is

done both globally (intensity-based) and locally (contrast-based). Global thresholding will generally not

recover complete vessels but the authors assume that a sufficient number of points will be obtained and

that gradient ascent will be able to reconstruct the vessel’s centerline. Given an initial scale σ0, using

gradient ascent an intensity maximum is reached by following the local gradient ∇I and the eigenvectors
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ei, i = 2, 3 that define the cross-sectional plane, i.e.

xt = xt−1 +

(
argmax

h
I(xt−1 + h∇I)

)
∇I, (18)

xt → xt +

(
argmax

h
I(xt + hei)

)
ei. (19)

At each iteration t, xt is accepted if the ridge conditions are satisfied. The dynamic optimization of

the ridge scale σ at x is performed by convoluting a kernel composed of a ring of spherical boundary

operators at a distance ρ. The ridge scale σ is selected as the ρ that maximizes the response given by

the kernel. Finally, a complete vessel centerline is obtained by following the ridge at xn in the positive

e1 and negative −e1 local tangent direction by an amount β. This approach is similar to the marching

lines algorithm employed by Krissian et al. [9]. Here, β determines how far from the current point the

shifted ridge normal plane should be extended. The new ridge point xn+i is kept if a line search based

on Eq. 19 at xn+i yields a maxima that satisfies the ridge conditions.

3.2.5 Minimum Paths in 4D Scale Space (Li and Yezzi [11])

The methods [19, 9, 1] presented so far explore the effect of local structure on the eigenvectors and

eigenvalues of the Hessian matrix. They present practical algorithms for extracting the centerline and

the width of vessel-like objects from medical images. In these approaches, the choice of an appropriate

scale for performing kernel computations is discussed profusely, particularly in Krissian et al. [9]; however,

scale is always treated as a local quantity and no scale correspondence is made between adjacent voxels.

Wink et al. [26] address this issue by designing a centerline extraction method based on a minimum cost

path approach in a 4D image, where the fourth dimension is defined by scale.

The filter is based on the work by Sato et al. [19] for describing the Hessian eigenvalues λi. The

vesselness response filter R(x, σ) at a voxel x and at scale σ is defined by

R(x, σ) =


0 for λ2 > 0

exp

(
−

λ1
λ2

2

2β2

)(
1− exp

(
λ2
1+λ2

2
−2c2

))
otherwise

(20)

where β and c are two parameters that control the sensitivity of the filter. The response is maximal

when the scale σ approximates the vessel radius. At each voxel x in the image I, the response R(x, σ) is

evaluated for a discrete range of σ values. The response from all voxels is combined in a 3D cost image,

where intensity is replaced by a cost function, C(x, σ), such that a high response yields a small cost.

The minimum value of the response image, Rl, is used as an epsilon to prevent a division by zero when

the response R(x, σ) is null:

C(x, σ) =

 1
Rl

for R(x, σ) = 0

1
R(σ) otherwise.

(21)

The transition cost a(n,n′) for going from a node n = (x, σ) to a node n′ = (x′, σ′) in the cost image

is a weighted function of the cost at n′, a(n,n′) = w(σ, σ′)C(x′, σ′), where w is a function of the scale in

two adjacent nodes that is used to control the extent to which the scale is allowed to change in a given

vessel. If vessels are known to have a distinct and constant width, a weight function that yields a large

cost for different scales will be preferable. The minimum path is found using Dijkstra’s algorithm.
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3.2.6 Minimum Paths in 4D Potential Fields (Li and Yezzi [11])

Li and Yezzi [11] develop a semi-automatic vessel segmentation approach based on minimal paths in 4D

space, similarly to Wink et al. [26]. The main differences are found in the formulation of the energy

formulation that defines a minimum path and in the automation of the procedure. In Li and Yezzi [11],

vessel centres are not detected automatically. Instead, the user selects two vessel endpoints in-between

which a globally minimizing trajectory is found. This minimum trajectory is found as a path in a

gradient potential. Two differential potential functions are used. The first potential function is defined

by exploiting the fact that blood vessels have a nearly constant intensity, that is the image intensity

gradient is negligible for voxels within a blood vessel. The mean µ(B) and standard deviation σ(B) of

voxel intensities in a ball B(x, r) of volume V (B) centered at x and with radius r are defined as

µ(B) = 1

V

∫
B
I(p)dp, σ2(B) = 1

V

∫
B
(I(p)− µ(B))2 dp. (22)

A potential P̃1 is then defined that is targeted towards vessel structures with constant intensity:

P̃1(x) = ω +
λ1

r2
[µ(B(x))− µ(B0)]

2 +
λ2

r2
[
σ2(B(x))− σ2(B0)

]2
, (23)

where B0 is the sphere at the first endpoint of the path, x0, ω is a constant that controls the smoothness

of the path, and λ1, λ2 are weights for the mean difference and variance difference between spheres along

the path and the starting sphere. The potential P̃1 is designed to increase if a sphere’s radius differs from

the width of the tubular structure. The potential is also weighted by the inverse of the sphere radius r

such that larger spheres produce a smaller potential and are therefore favoured over smaller ones. This

characteristic ensures that the vessel surface is maximally reconstructed.

The second potential P̃2 relaxes the intensity constancy condition along the vessel centerline. Rather

than deriving an expression based on the volume of the ball B(x, r) of radius r centred at x, its boundary

∂B is used instead and V (∂B), µ(∂B), σ2(∂B) are recomputed in Eq. 22. The mean difference δµ(∂B) =
|µ(∂B)− µ(∂B′)| and the variance difference δσ2(∂B) =

∣∣σ2(∂B)− σ2(∂B′)
∣∣ are also introduced, where

∂B′=∂B(x, r − h) is a shell of radius less than ∂B. The potential is given by

P̃2(x) = w +
λ1

1 + δ2µ(∂B(x))
+

λ2

1 + δ2
σ2(∂B(x))

, (24)

where ω, λ1, λ2 are parameters introduced similarly as in Eq. 23. The resulting Eikonal equation

||∇Up0|| = P̃ with Up0 = 0 is solved for using the fast marching method, similar in design to the method

employed in Wink et al. [26] for finding minimal paths. Once the minimal potential field is obtained,

the minimal path can be traced back from the last endpoint to the first by following the gradient field.

The advantage of the work described by Li and Yezzi [11] over many segmentation methods is its

ability to simultaneously extract vessel surfaces and centerlines. As the vessel centerline is reconstructed

by solving the minimal path problem in a potential field, the vessel surface can be directly obtained as

the envelope of the spheres B that lie along the vessel centerline. This method also has several drawbacks.

First, it is semi-automatic such that endpoints between vessels need to be specified manually. It can be

argued that this method could be combined with other filter-based methods for detecting vessel centres

from which minimal paths could be propagated, similarly to Wink et al. [26]. Another drawback is the

extensive use of model parameters. The authors explicitly mention that the optimal set of parameters is

very application dependent. By the number of required parameters, it is unclear how much work needs

to be put in the optimization of these parameters for the method to work optimally.
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3.2.7 Combining Filters and Flows (Descoteaux et al. [5])

So far, Section 3.2 has shown that pure filter-based approaches can be used successfully to segment

neurovasculature. These approaches are fundamentally different from the active contours techniques

described in Section 3.1, where computations are done in a dynamic setting rather than a static one.

The method presented by Descoteaux et al. [5] combines the response given by filters with an active

contour formulation. As before [26, 9, 19], a vesselness measure [7] is used based on the eigenvalues of

the Hessian matrix and where vessels are assumed to be dark against a light background

V (σ) =

0 for λ2 < 0 or λ3 < 0(
1− exp

(
−R2

A
2α2

))
exp

(
−R2

B
2β2

)(
1− exp

(
− S2

2c2

))
otherwise

(25)

where RB = |λ1|√
|λ2λ3|

, RA =
∣∣∣λ2
λ3

∣∣∣ and S = ||H||F =
√∑3

i=1 λ
2
j . α, β, c are thresholds that control

the sensitivity of the line filter to the measures RA,RB,S. RA differentiates sheet-like from tube-

like structures and RB differentiates tube-like from blob-like and noise-like structures. The vesselness

measure is used to find potential vessel centerline candidates. A multiscale analysis is performed by

considering multiple values of σ in Eq. 25 and selecting the scale σ0 at which the response is maximal.

This maximizing σ0 approximates the radius of the underlying vessel.

The second step is to propagate the vesselness measure from the centerline of a vessel to its expected

boundary by considering all voxels that lie within an ellipsoid aligned with the centerline and with a

semi-minor axis length proportional to the estimated vessel radius. The contribution of the vesselness

measure from a centerline maxima x to a given voxel xe depends on its position in the elliptical coordinate

system. The vesselness measure is scaled by the magnitude of the projection of the vector xe−x onto the

cross-sectional plane formed by the eigenvectors e2, e3 of the Hessian matrix. The resulting accumulation

of vesselness measures is defined as the ϕ distribution and is maximal close to vessel boundaries.

An extended vector field is then constructed from the image gradient ∇I and the distribution ϕ,

V = ϕ ∇I
|∇I| . This vector field is directed in the direction of the gradient of the image, which is orthogonal

to the vessel boundary. The gradient is maximal on the vessel boundary and ϕ is large near vessel

boundaries, making V a good detector of vessel boundaries. A level set active contour formulation is

then used to embed the gradient field and conclude the segmentation algorithm, as shown in Section 3.1.

More precisely, V is used in a flux maximizing geometric flow [24] that yields

St =

(
∇ϕ · ∇I

|∇I|
+ ϕκI

)
N, (26)

where κI is the mean curvature of the iso-intensity level set of the image. The first term in Eq. 26

pushes back the evolving surface if it overshoots the boundary since ∇ϕ has a zero-crossing the vessel

boundaries and ∇I does not change sign. The second term has anisotropic smoothing properties and

thus stabilizes the evolution of the manifold. Outside vessels, both ϕ and ∇ϕ are zero which prevents

the flow from leaking. Again, vessel centerlines can be extracted as the zero level set of the manifold S.

3.3 Model-based Segmentation (Tyrrell et al. [23])

Tyrrell et al. [23] propose a vessel segmentation method that is neither based on image filters nor active

contours. Rather than construct a virtual ellipsoid based on the eigendecomposition of the Hessian
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matrix, here blood vessels are modelled explicitly as physical piecewise superellipsoids. The superellipsoid

approximates both the boundary and centerline, through its semi-major and semi-minor axes.

Cylindroidal forms of a superellipsoid S(x, ϵ) are used which can be described as

S(x, ϵ) =
(
|x|2 + |y|2

) 1
ϵ
+ |z|

1
ϵ (27)

where ϵ controls the shape of the superellipsoid, ranging from ellipsoidal to elliptical cylindrical forms.

Eq. 27 describes a superellipsoid that has a fixed scale, is aligned with the canonical coordinate system,

and is centred at the origin. A more general expression can be obtained by applying a coordinate

transformation: S(x,β) = S
(
D(σ)−1R(ϕ)T (x− µ), ϵ

)
, where D(σ) = diag(σ1, σ2, σ3) is an anisotropic

scaling matrix, R ∈ R3 is a rotation matrix described by ϕ and µT = (µx, µy, µz) is a translation

vector. These parameters are represented by the parameter vector β = (µT ,σ,ϕ, ϵ). Tyrrell et al.

[23] derive a procedure for estimating parameters in β. A strong assumption is placed on the grayscale

appearance of voxels in the image that are contained inside (foreground) and outside (background) of

the superellipsoid. These two regions, R(β) and Ω\R(β)), are respectively described as homogeneous

with constant intensity values IF and IB. Vessels are assumed to be dark and contrast against a light

background such that IB ≫ IF ≈ 0.

Based on the foreground and background intensity assumptions, a cost function L(β, IF , IB) is de-

veloped such that its maxima yields the optimal superellipsoid describing a vessel. The cost function is

evaluated both at the interior R(β) and exterior Ω\R(β) points x of the superellipsoid:

L(β, IF , IB) =

∫
R(β)

g(I(x), IF )dx+

∫
Ω\R(β)

g(I(x), IB)dx (28)

where g(I1, I2) ≡ log f(I1 − I2) describes noise in the image, i.e. given a noise model, f(I1 − I2) is the

probability that the intensity I1 − I2 corresponds to noise. Hence, if I1 − I2 is sufficiently small for all

x in Eq. 28, the superellipsoid fits well the data. Since IF and IB are not known in advance, Eq. 28 is

maximized by alternating between intensity and parameter estimates. At each iteration t, the parameter

vector β is updated using a gradient descent

βt+∆t
= βt +

dβ

dt
∆t. (29)

The foreground and background intensities are then updated by fixing the model parameters β and

observing how the cost in Eq. 28 varies, based on image noise estimates.

Some issues arise in the fitting of the superellipsoid model to vessel segments. Adjacent vessels

appear as background intensity outliers to one another such that intensity estimates may fail for densely

intertwined vessel networks. Morever, the superellipsoid model has an explicit geometry, making the

connection between two superellipsoids piecewise continuous. An implicit description of the model could

yield a smoother representation for subsequent visualization.

3.4 Histogram-based Segmentation (Wilson and Noble [25])

Histogram-based approaches use the histogram of voxel intensities to identify whether a vessel is detected

at a given voxel given its intensity. A thresholding algorithm can then be used to reconstruct vessels from

this voxel volume. These methods contrast heavily from the filter-based and active contour methods
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presented so far, as they address the distribution of voxel intensities directly and ignore their spatial

component. Early work is carried out by Wilson and Noble [25]. They observe that in an MRA image,

the histogram shape is typically bimodal. The first, low-intensity, peak represents mainly background

tissue (external to the head) and cerebrospinal fluid (CSF). The second, high-intensity, peak represents a

combination of brain tissue, eyes, skin, and bone. Vessel voxels lie at the upper tail of the high intensity

peak.

Wilson and Noble [25] propose to reconstruct the distribution of voxel intensities by a mixture of

three distributions: one Gaussian G(x, σ1) for the low-intensity peak, one Gaussian G(x, σ2) for the high-

intensity peak, and a uniform distribution ω0
1
I located at the right-tail of the high-intensity Gaussian.

The uniform distribution corresponds to the region where voxels start having a smaller probability of

being a blood vessel. This is represented by the mixture distribution

p(x) = ω0
1

I
+

2∑
k=1

wk
1√
2πσ2

k

exp

[
−1

2

(
x− µk

σk

)2
]
. (30)

The parameters of the distributions are found in an expectation maximization (EM) algorithm based

on the voxel histogram. The region where the second Gaussian meets the uniform distribution is marked

as the high intensity threshold in a hysteresis thresholding approach. The lower threshold is determined

more carefully since slow blood flow (in aneurysms, for instance) can lead to lower intensities in MRA.

Following the hysteresis thresholding, the segmentation is refined by propagating the vessel classification

using local connectivity. Sufficiently high intensity voxels that are close to segmented vessel voxels are

given a higher probability of being vessel voxels. An histogram is constructed for these lower intensity

voxels and the EM approach is used once more to fit the distribution, the minimum of which is retained

for the lower bound of another hysteresis thresholding.

There are many issues related to the sole use of histograms to determine vessel voxels. The method

presented in Wilson and Noble [25] is purely global since the whole spectrum of voxel intensities is fitted

by a mixture of probability distributions. Other methods will try to fit the intensity histogram using

more comprehensive models of the intensity distribution. Nevertheless, histogram-based methods lack

structural accuracy in vessel extraction – the vessels are not modelled explicitly and no multiscale analysis

is performed – and their applicability typically lies in a pre-filtering pass. More important issues arise

from the nature of the imaging itself. Tissues with a short T1 relaxation time such as fat, methemoglobin,

and other contrast enhancing structures can produce a very bright signal, undistinguishable from flowing

blood [20].

4 Conclusion

This literature review presented a non-exhaustive selection of relevant papers in the field of brain vessel

segmentation. Segmentation methods were introduced that make use of a combination of active contours,

filters, vessel models, and image histograms. Filter-based approaches were shown to be robust and

flexible to vessel scale, and to be useful in the initialization of other approaches. No assumptions are

made on the topology of a vessel so branching is dealt with naturally. However, these methods are

hard to assist manually, one major advantage of active contour methods, particularly in their explicit

formulation. Model-based approaches such as superellipsoids show great potential. The degrees of
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freedom of an explicit superellipsoid simultaneously captures centerlines and boundaries while being

robust to noise. Finally, histogram-based approaches are useful for a fast thresholding and visualization

of vessels, assuming they are well represented in the image.

The segmentation methods presented in this literature review are mostly concerned with the de-

tection of vascular structures rather than in the interpretation of the resulting images with respect to

the image modality. Neurovascular images are considered as volumes containing tubular structures for

validating their algorithms. The focus of this review was put on these algorithms in order to make an

abstraction of the vascular structures. A temporal quantification of vessel branch points, vessel spa-

tial relationship, segment extraction, diameter measurements, complexity and complication assessment,

intra-patient models, and inter-patient comparisons leave a lot of room for future research. More detailed

reviews include Lesage et al. [10], and Kirbas and Quek [8].
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